Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz waves are effective probes for IC heat barriers

12.05.2009
By modifying a commonly used commercial infrared spectrometer to allow operation at long-wave terahertz frequencies, researchers at the National Institute of Standards and Technology (NIST) discovered an efficient new approach to measure key structural properties of nanoscale metal-oxide films used in high-speed integrated circuits.

Their technique, described in a recent paper,* could become an important quality-control tool to help monitor semiconductor manufacturing processes and evaluate new insulating materials.

Chip manufacturers deposit complicated mazes of layered metallic conductor and semiconconductor films interlaced with insulating metal oxide nanofilms to form transistors and conduct heat. Because high electrical leakage and excess heat can cause nanoscale devices to operate inefficiently or fail, manufacturers need to know the dielectric and mechanical properties of these nanofilms to predict how well they will perform in smaller, faster devices.

Manufacturers typically assay the structure of metal oxide films using X-ray spectroscopy and atomic force microscopy, both tedious and time-consuming processes. NIST researchers discovered that they could extract comparable levels of detail about the structural characteristics of these thin films by measuring their absorption of terahertz radiation, which falls between the infrared and microwave spectral regions.

Although terahertz spectroscopy is known to be very sensitive to crystal and molecular structure, the degree to which the metal oxide films absorbed the terahertz light was a surprise to NIST researchers.

“No one thought nanometer-thick films could be detected at all using terahertz spectroscopy, and I expected that the radiation would pass right through them,” says Ted Heilweil, a NIST chemist and co-author of the paper. “Contrary to these expectations, the signals we observed were huge.”

The NIST team found that the atoms in the films they tested move in concert and absorb specific frequencies of terahertz radiation corresponding to those motions. From these absorbed frequencies the team was able to extrapolate detailed information about the crystalline and amorphous composition of the metal oxide films, replete with structures that could affect their function.

The team’s experiments showed that a 40 nanometer thick hafnium oxide film grown at 581 kelvin (307 degrees Celsius) had an amorphous structure with crystalline regions spread throughout; nanofilms grown at lower temperatures, however, were consistently amorphous. According to Heilweil, an approximately 5 nanometer film thickness is the detection limit of the terahertz method, and the efficacy of the technique depends to some degree on the type of metal oxide, though the group noted that all metal-oxide materials surveyed exhibit distinct spectral characteristics.

* E. Heilweil, J. Maslar, W. Kimes, N. Bassim and P. Schenck. Characterization of metal-oxide nanofilm morphologies and composition by terahertz transmission spectroscopy. Optics Letters. 34 (9), 1360–1362 (2009).

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>