Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz waves are effective probes for IC heat barriers

12.05.2009
By modifying a commonly used commercial infrared spectrometer to allow operation at long-wave terahertz frequencies, researchers at the National Institute of Standards and Technology (NIST) discovered an efficient new approach to measure key structural properties of nanoscale metal-oxide films used in high-speed integrated circuits.

Their technique, described in a recent paper,* could become an important quality-control tool to help monitor semiconductor manufacturing processes and evaluate new insulating materials.

Chip manufacturers deposit complicated mazes of layered metallic conductor and semiconconductor films interlaced with insulating metal oxide nanofilms to form transistors and conduct heat. Because high electrical leakage and excess heat can cause nanoscale devices to operate inefficiently or fail, manufacturers need to know the dielectric and mechanical properties of these nanofilms to predict how well they will perform in smaller, faster devices.

Manufacturers typically assay the structure of metal oxide films using X-ray spectroscopy and atomic force microscopy, both tedious and time-consuming processes. NIST researchers discovered that they could extract comparable levels of detail about the structural characteristics of these thin films by measuring their absorption of terahertz radiation, which falls between the infrared and microwave spectral regions.

Although terahertz spectroscopy is known to be very sensitive to crystal and molecular structure, the degree to which the metal oxide films absorbed the terahertz light was a surprise to NIST researchers.

“No one thought nanometer-thick films could be detected at all using terahertz spectroscopy, and I expected that the radiation would pass right through them,” says Ted Heilweil, a NIST chemist and co-author of the paper. “Contrary to these expectations, the signals we observed were huge.”

The NIST team found that the atoms in the films they tested move in concert and absorb specific frequencies of terahertz radiation corresponding to those motions. From these absorbed frequencies the team was able to extrapolate detailed information about the crystalline and amorphous composition of the metal oxide films, replete with structures that could affect their function.

The team’s experiments showed that a 40 nanometer thick hafnium oxide film grown at 581 kelvin (307 degrees Celsius) had an amorphous structure with crystalline regions spread throughout; nanofilms grown at lower temperatures, however, were consistently amorphous. According to Heilweil, an approximately 5 nanometer film thickness is the detection limit of the terahertz method, and the efficacy of the technique depends to some degree on the type of metal oxide, though the group noted that all metal-oxide materials surveyed exhibit distinct spectral characteristics.

* E. Heilweil, J. Maslar, W. Kimes, N. Bassim and P. Schenck. Characterization of metal-oxide nanofilm morphologies and composition by terahertz transmission spectroscopy. Optics Letters. 34 (9), 1360–1362 (2009).

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>