Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz waves are effective probes for IC heat barriers

12.05.2009
By modifying a commonly used commercial infrared spectrometer to allow operation at long-wave terahertz frequencies, researchers at the National Institute of Standards and Technology (NIST) discovered an efficient new approach to measure key structural properties of nanoscale metal-oxide films used in high-speed integrated circuits.

Their technique, described in a recent paper,* could become an important quality-control tool to help monitor semiconductor manufacturing processes and evaluate new insulating materials.

Chip manufacturers deposit complicated mazes of layered metallic conductor and semiconconductor films interlaced with insulating metal oxide nanofilms to form transistors and conduct heat. Because high electrical leakage and excess heat can cause nanoscale devices to operate inefficiently or fail, manufacturers need to know the dielectric and mechanical properties of these nanofilms to predict how well they will perform in smaller, faster devices.

Manufacturers typically assay the structure of metal oxide films using X-ray spectroscopy and atomic force microscopy, both tedious and time-consuming processes. NIST researchers discovered that they could extract comparable levels of detail about the structural characteristics of these thin films by measuring their absorption of terahertz radiation, which falls between the infrared and microwave spectral regions.

Although terahertz spectroscopy is known to be very sensitive to crystal and molecular structure, the degree to which the metal oxide films absorbed the terahertz light was a surprise to NIST researchers.

“No one thought nanometer-thick films could be detected at all using terahertz spectroscopy, and I expected that the radiation would pass right through them,” says Ted Heilweil, a NIST chemist and co-author of the paper. “Contrary to these expectations, the signals we observed were huge.”

The NIST team found that the atoms in the films they tested move in concert and absorb specific frequencies of terahertz radiation corresponding to those motions. From these absorbed frequencies the team was able to extrapolate detailed information about the crystalline and amorphous composition of the metal oxide films, replete with structures that could affect their function.

The team’s experiments showed that a 40 nanometer thick hafnium oxide film grown at 581 kelvin (307 degrees Celsius) had an amorphous structure with crystalline regions spread throughout; nanofilms grown at lower temperatures, however, were consistently amorphous. According to Heilweil, an approximately 5 nanometer film thickness is the detection limit of the terahertz method, and the efficacy of the technique depends to some degree on the type of metal oxide, though the group noted that all metal-oxide materials surveyed exhibit distinct spectral characteristics.

* E. Heilweil, J. Maslar, W. Kimes, N. Bassim and P. Schenck. Characterization of metal-oxide nanofilm morphologies and composition by terahertz transmission spectroscopy. Optics Letters. 34 (9), 1360–1362 (2009).

Mark Esser | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>