Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Telescopes to Give UC San Diego Researchers Glimpse of the Beginning of Time

11.01.2013
Where do we come from? What is the universe made of? Will the universe exist only for a finite time or will it last forever?

These are just some of the questions that University of California, San Diego physicists are working to answer in the high desert of northern Chile. Armed with a massive 3.5 meter (11.5 foot) diameter telescope designed to measure space-time fluctuations produced immediately after the Big Bang, the research team will soon be one step closer to understanding the origin of the universe. The Simons Foundation has recently awarded the team a $4.3 million grant to build and install two more telescopes. Together, the three telescopes will be known as the Simons Array.

“The Simons Array will inform our knowledge of the universe in a completely new way,” said Brian Keating, associate professor of Physics at UC San Diego’s Center for Astrophysics and Space Sciences. Keating will lead the project with Professor Adrian Lee of UC Berkeley.

Fluctuations in space-time, also known as “gravitational waves,” are gravitational perturbations that propagate at the speed of light and can penetrate “through” matter, like an x-ray. The gravitational waves are thought to have imprinted the “primordial soup” of matter and photons that later coalesced to become gases, stars and galaxies—all the structures that we now see. The photons left over from the Big Bang will be captured by the telescopes to give scientists a unique view back to the universe’s beginning.

The telescopes of the Simons Array—named in recognition of the grant—will focus light onto more than 20,000 detectors, each of which must be cooled nearly to absolute zero. The result will provide an unmatched combination of sensitivity, frequency coverage and sky coverage.

Last year, the first POLARBEAR (for Polarization of Background Radiation) telescope, which will comprise one third of the Simons Array, was set up in Chile’s Atacama Desert. The site is one of the highest and driest places on Earth at 17,000 feet above sea level, making it one of the planet’s best locations for such a study. The site’s high elevation means that it lies above half of the Earth’s atmosphere. Because water vapor absorbs microwaves, the dry climate allows the already thin atmosphere to transmit even more of the faint cosmic microwave background radiation. Since March 2012, the telescope has recorded data to identify an imprint of primordial gravitational waves on the cosmic microwave background radiation, the relic radiation remaining from the Big Bang.

While POLARBEAR was a major technological achievement, the single telescope is sensitive to just one frequency. Additional detectors in the new telescopes will measure the cosmic microwave background at different frequencies so that researchers can compare the data and subtract out contaminating radiation emitted from the Milky Way Galaxy. Together, the three telescopes will also be much more sensitive to the elusive gravitational wave signals, offering deeper insight into the origin of the universe.

Keating continued, “The Simons Array will have the same or better capabilities as a $1 billion satellite, and with NASA’s budget constraints, there are no planned space-based missions for this job.”

Scientists from UC San Diego, UC Berkeley, Lawrence Berkeley National Laboratory, University of Colorado, McGill University in Canada and the KEK Laboratory in Japan are collaborating on the project.

Based in New York City, the Simons Foundation was established in 1994 by Jim and Marilyn Simons. The foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The Foundation is delighted to be able to help support this innovative investigation into the earliest moments of the universe.

Initial funding for the first POLARBEAR telescope came from the National Science Foundation, the James B. Ax Family Foundation and an anonymous donor.

For more information on the Simons Array, visit cosmology.ucsd.edu. More information on the Simons Foundation can be found at simonsfoundation.org.

Jade Griffin | Newswise
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>