Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Telescopes to Give UC San Diego Researchers Glimpse of the Beginning of Time

11.01.2013
Where do we come from? What is the universe made of? Will the universe exist only for a finite time or will it last forever?

These are just some of the questions that University of California, San Diego physicists are working to answer in the high desert of northern Chile. Armed with a massive 3.5 meter (11.5 foot) diameter telescope designed to measure space-time fluctuations produced immediately after the Big Bang, the research team will soon be one step closer to understanding the origin of the universe. The Simons Foundation has recently awarded the team a $4.3 million grant to build and install two more telescopes. Together, the three telescopes will be known as the Simons Array.

“The Simons Array will inform our knowledge of the universe in a completely new way,” said Brian Keating, associate professor of Physics at UC San Diego’s Center for Astrophysics and Space Sciences. Keating will lead the project with Professor Adrian Lee of UC Berkeley.

Fluctuations in space-time, also known as “gravitational waves,” are gravitational perturbations that propagate at the speed of light and can penetrate “through” matter, like an x-ray. The gravitational waves are thought to have imprinted the “primordial soup” of matter and photons that later coalesced to become gases, stars and galaxies—all the structures that we now see. The photons left over from the Big Bang will be captured by the telescopes to give scientists a unique view back to the universe’s beginning.

The telescopes of the Simons Array—named in recognition of the grant—will focus light onto more than 20,000 detectors, each of which must be cooled nearly to absolute zero. The result will provide an unmatched combination of sensitivity, frequency coverage and sky coverage.

Last year, the first POLARBEAR (for Polarization of Background Radiation) telescope, which will comprise one third of the Simons Array, was set up in Chile’s Atacama Desert. The site is one of the highest and driest places on Earth at 17,000 feet above sea level, making it one of the planet’s best locations for such a study. The site’s high elevation means that it lies above half of the Earth’s atmosphere. Because water vapor absorbs microwaves, the dry climate allows the already thin atmosphere to transmit even more of the faint cosmic microwave background radiation. Since March 2012, the telescope has recorded data to identify an imprint of primordial gravitational waves on the cosmic microwave background radiation, the relic radiation remaining from the Big Bang.

While POLARBEAR was a major technological achievement, the single telescope is sensitive to just one frequency. Additional detectors in the new telescopes will measure the cosmic microwave background at different frequencies so that researchers can compare the data and subtract out contaminating radiation emitted from the Milky Way Galaxy. Together, the three telescopes will also be much more sensitive to the elusive gravitational wave signals, offering deeper insight into the origin of the universe.

Keating continued, “The Simons Array will have the same or better capabilities as a $1 billion satellite, and with NASA’s budget constraints, there are no planned space-based missions for this job.”

Scientists from UC San Diego, UC Berkeley, Lawrence Berkeley National Laboratory, University of Colorado, McGill University in Canada and the KEK Laboratory in Japan are collaborating on the project.

Based in New York City, the Simons Foundation was established in 1994 by Jim and Marilyn Simons. The foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The Foundation is delighted to be able to help support this innovative investigation into the earliest moments of the universe.

Initial funding for the first POLARBEAR telescope came from the National Science Foundation, the James B. Ax Family Foundation and an anonymous donor.

For more information on the Simons Array, visit cosmology.ucsd.edu. More information on the Simons Foundation can be found at simonsfoundation.org.

Jade Griffin | Newswise
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>