Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology-testing Proba-2 opens new eye on the Sun

26.01.2010
Packed with novel devices and science instruments, Proba-2 is demonstrating technologies for future ESA missions while providing new views of our Sun.

At a press conference on Tuesday at the Royal Observatory of Belgium in Brussels, the team behind the small satellite declared themselves extremely happy with its first three months in orbit and unveiled Proba-2’s first solar observations.

Since its launch on 2 November, Proba-2’s numerous subsystems have been switched on one by one and their outputs checked. This commissioning process is essential before the mission’s working life can begin.

Mission contributions have come from across Europe and Canada, with Belgium as a major participant. It was constructed for ESA by Belgian firm Verhaert Space, part of the QinetiQ group, and the mission is run from ESA’s Redu ground station in Belgium.

Proba-2 is the latest in ESA’s ‘Project for Onboard Autonomy’ series and its commissioning is proceeding with a comparatively modest level of ground personnel. “The satellite is sufficiently advanced to oversee itself on a day-to-day basis,” said Frank Preud’homme of Verhaert Space.

Stepping stone to the future

The smooth operation of this small satellite – less than a cubic metre – is a stepping stone to ESA missions in the decade ahead. A total of 17 new technologies are being demonstrated aboard Proba-2 before being adopted by full-sized spacecraft, including a new startracker for the BepiColombo Mercury craft and a wide-angle camera for ExoMars and potentially the asteroid-explorer Marco Polo.

“The majority of technology demonstrators on Proba-2 have now been activated and I am happy to see that the first data we receive are very good,” commented ESA’s Director of Technical and Quality Management, Michel Courtois. “Proba-2 has shown that it can demonstrate technology in orbit.”

The satellite runs itself using an advanced computer built by Verhaert Space and running on the ESA-designed LEON2-FT microprocessor. “Proba-2’s computer is the most powerful computer for space applications developed in Europe,” added Mr Preud’homme. “It has been selected for a number of new ESA missions.”

Space weather station

The satellite will do double duty as a technology testbed and science platform. In addition to its experimental payloads, Proba-2 is hosting a quartet of new instruments focused on the Sun and space weather.

“In science terms, Proba-2 is a solar observatory,” said David Southwood, ESA Director of Science and Robotic Exploration. “Its instruments are evolved from those on SOHO, the ESA/NASA full-sized watchdog for solar storms, and are testing detector and software technology required for Solar Orbiter, envisaged as Europe’s next big solar mission.”

The Royal Observatory of Belgium (ROB) has the scientific responsibility for Proba-2’s two solar monitoring instruments. ROB’s David Berghmans described the Sun-imaging SWAP (Sun Watcher using APS detectors and imaging processing) instrument as an exercise in miniaturisation: “It is a full space telescope the size of a wide shoe box. Despite its size, SWAP is very ambitious, designed as a full ‘space weather’ instrument to detect all significant solar events such as solar flares or coronal mass ejections.”

Another ROB team led by Jean-Francois Hochedez oversees the LYRA (Lyman alpha radiometer) instrument which employs robust ultraviolet detectors – some made of diamond – to measure solar radiation.

“Proba-2 again proves the reliability of Belgian space technology and the Proba satellite platform,” said Belgian Science Minister Sabine Laruelle. “Together with the scientists of Brussels’ ‘Space Pole’, I eagerly await the first observations by the state-of-the-art instruments SWAP and LYRA, both made with substantial Belgian contributions.”

Opening a window on the ionosphere

Increasing Proba-2’s value in studying space weather – which can damage satellites, harm unprotected astronauts and affect ground-based electrical infrastructure – the satellite combines solar observation with plasma content monitoring of the space around it, revealing how the Sun’s activity can influence Earth’s ionosphere.

Proba-2 does so through two instruments developed by a consortium of Czech institutions led by the Czech Republic’s Academy of Sciences with considerable support from the Czech Space Research Centre.

Both the Dual Segmented Langmuir Probe (DSLP)and the Thermal Plasma Measurement Unit (TPMU) will probe in detail the satellite’s nearby surroundings. “Our aim is to identify observed ionospheric irregularities with possible solar-terrestrial connections due to sudden space weather events,” said Štepán Štverák of the Czech Institute of Atmospheric Physics, part of the DSLP team. “Preliminary results are very promising.”

Extending the Proba series

Proba-1, launched in October 2001, established the principle of small satellites for technology demonstrations. It included Earth-monitoring instruments which proved so successful that the still-operating mission was subsequently transferred to ESA’s Earth Observation Directorate.

Providing frequent, low-cost flight testing opportunities for European industry as part of the Agency’s General Support Technology Programme (GSTP), the Proba series is set to continue. Proba-3 will be a double spacecraft to study the solar corona while testing precision formation-flying techniques. Proba-V will house a miniaturised version of the Vegetation sensor currently flying on France’s mainstream SPOT-5 satellite.

Ninja Menning | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/esaSC/SEMYNUKOP4G_index_0.html

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>