Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology-testing Proba-2 opens new eye on the Sun

26.01.2010
Packed with novel devices and science instruments, Proba-2 is demonstrating technologies for future ESA missions while providing new views of our Sun.

At a press conference on Tuesday at the Royal Observatory of Belgium in Brussels, the team behind the small satellite declared themselves extremely happy with its first three months in orbit and unveiled Proba-2’s first solar observations.

Since its launch on 2 November, Proba-2’s numerous subsystems have been switched on one by one and their outputs checked. This commissioning process is essential before the mission’s working life can begin.

Mission contributions have come from across Europe and Canada, with Belgium as a major participant. It was constructed for ESA by Belgian firm Verhaert Space, part of the QinetiQ group, and the mission is run from ESA’s Redu ground station in Belgium.

Proba-2 is the latest in ESA’s ‘Project for Onboard Autonomy’ series and its commissioning is proceeding with a comparatively modest level of ground personnel. “The satellite is sufficiently advanced to oversee itself on a day-to-day basis,” said Frank Preud’homme of Verhaert Space.

Stepping stone to the future

The smooth operation of this small satellite – less than a cubic metre – is a stepping stone to ESA missions in the decade ahead. A total of 17 new technologies are being demonstrated aboard Proba-2 before being adopted by full-sized spacecraft, including a new startracker for the BepiColombo Mercury craft and a wide-angle camera for ExoMars and potentially the asteroid-explorer Marco Polo.

“The majority of technology demonstrators on Proba-2 have now been activated and I am happy to see that the first data we receive are very good,” commented ESA’s Director of Technical and Quality Management, Michel Courtois. “Proba-2 has shown that it can demonstrate technology in orbit.”

The satellite runs itself using an advanced computer built by Verhaert Space and running on the ESA-designed LEON2-FT microprocessor. “Proba-2’s computer is the most powerful computer for space applications developed in Europe,” added Mr Preud’homme. “It has been selected for a number of new ESA missions.”

Space weather station

The satellite will do double duty as a technology testbed and science platform. In addition to its experimental payloads, Proba-2 is hosting a quartet of new instruments focused on the Sun and space weather.

“In science terms, Proba-2 is a solar observatory,” said David Southwood, ESA Director of Science and Robotic Exploration. “Its instruments are evolved from those on SOHO, the ESA/NASA full-sized watchdog for solar storms, and are testing detector and software technology required for Solar Orbiter, envisaged as Europe’s next big solar mission.”

The Royal Observatory of Belgium (ROB) has the scientific responsibility for Proba-2’s two solar monitoring instruments. ROB’s David Berghmans described the Sun-imaging SWAP (Sun Watcher using APS detectors and imaging processing) instrument as an exercise in miniaturisation: “It is a full space telescope the size of a wide shoe box. Despite its size, SWAP is very ambitious, designed as a full ‘space weather’ instrument to detect all significant solar events such as solar flares or coronal mass ejections.”

Another ROB team led by Jean-Francois Hochedez oversees the LYRA (Lyman alpha radiometer) instrument which employs robust ultraviolet detectors – some made of diamond – to measure solar radiation.

“Proba-2 again proves the reliability of Belgian space technology and the Proba satellite platform,” said Belgian Science Minister Sabine Laruelle. “Together with the scientists of Brussels’ ‘Space Pole’, I eagerly await the first observations by the state-of-the-art instruments SWAP and LYRA, both made with substantial Belgian contributions.”

Opening a window on the ionosphere

Increasing Proba-2’s value in studying space weather – which can damage satellites, harm unprotected astronauts and affect ground-based electrical infrastructure – the satellite combines solar observation with plasma content monitoring of the space around it, revealing how the Sun’s activity can influence Earth’s ionosphere.

Proba-2 does so through two instruments developed by a consortium of Czech institutions led by the Czech Republic’s Academy of Sciences with considerable support from the Czech Space Research Centre.

Both the Dual Segmented Langmuir Probe (DSLP)and the Thermal Plasma Measurement Unit (TPMU) will probe in detail the satellite’s nearby surroundings. “Our aim is to identify observed ionospheric irregularities with possible solar-terrestrial connections due to sudden space weather events,” said Štepán Štverák of the Czech Institute of Atmospheric Physics, part of the DSLP team. “Preliminary results are very promising.”

Extending the Proba series

Proba-1, launched in October 2001, established the principle of small satellites for technology demonstrations. It included Earth-monitoring instruments which proved so successful that the still-operating mission was subsequently transferred to ESA’s Earth Observation Directorate.

Providing frequent, low-cost flight testing opportunities for European industry as part of the Agency’s General Support Technology Programme (GSTP), the Proba series is set to continue. Proba-3 will be a double spacecraft to study the solar corona while testing precision formation-flying techniques. Proba-V will house a miniaturised version of the Vegetation sensor currently flying on France’s mainstream SPOT-5 satellite.

Ninja Menning | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/esaSC/SEMYNUKOP4G_index_0.html

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>