Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology May Cool The Laptop

02.11.2009
Does your laptop sometimes get so hot that it can almost be used to fry eggs?

New technology may help cool it and give information technology a unique twist, says Jairo Sinova, a Texas A&M University physics professor.

Sinova and colleagues from Hitachi Cambridge Laboratory, Institute of Physics ASCR, University of Cambridge and University of Nottingham have had their research published in the renowned journal Nature Physics.

Laptops are getting increasingly powerful, but as their sizes are getting smaller they are heating up, so how to deal with excessive heat becomes a headache, Sinova explains.

“The crux of the problem is the way information is processed,” Sinova notes. “Laptops and some other devices use flows of electric charge to process information, but they also produce heat.

“Theoretically, excessive heat may melt the laptop,” he adds. “This also wastes a considerable amount of energy.”

Is there a solution?

One approach may be found in Sinova’s research – an alternative way to process information.

“Our research looks at the spin of electrons, tiny particles that naked eyes cannot detect,” the Texas A&M professor explains. “The directions they spin can be used to record and process information.”

To process information, Sinova says, it is necessary to create information, transmit the information and read the information. How these are done is the big question.

“The device we designed injects the electrons with spin pointing in a particular direction according to the information we want to process, and then we transmit the electrons to another place in the device but with the spin still surviving, and finally we are able to measure the spin direction via a voltage that they produce,” Sinova explains.

The biggest challenge to creating a spin-based device is the distance that the spins will survive in a particular direction.

“Transmission is no problem. You can think for comparison that if the old devices could only transmit the information to several hundred feet away, with our device, information can be easily transmitted to hundreds of miles away,” he says. “It is very efficient.”

Talking about its practical application, Sinova is very optimistic. “This new device, as the only all-semiconductor spin-based device for possible information processing, has a lot of real practical potential,” he says. “One huge thing is that it is operational at room temperature, which nobody has been able to achieve until now. It may bring in a new and much more efficient way to process information.”

Contact: Jairo Sinova at (979) 845-4179 or sinova@physics.tamu.edu or Miao Jingang at miaojingang@tamu.edu.

About research at Texas A&M University: As one of the world’s leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Jairo Sinova | EurekAlert!
Further information:
http://tamunews.tamu.edu
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>