Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology May Cool The Laptop

02.11.2009
Does your laptop sometimes get so hot that it can almost be used to fry eggs?

New technology may help cool it and give information technology a unique twist, says Jairo Sinova, a Texas A&M University physics professor.

Sinova and colleagues from Hitachi Cambridge Laboratory, Institute of Physics ASCR, University of Cambridge and University of Nottingham have had their research published in the renowned journal Nature Physics.

Laptops are getting increasingly powerful, but as their sizes are getting smaller they are heating up, so how to deal with excessive heat becomes a headache, Sinova explains.

“The crux of the problem is the way information is processed,” Sinova notes. “Laptops and some other devices use flows of electric charge to process information, but they also produce heat.

“Theoretically, excessive heat may melt the laptop,” he adds. “This also wastes a considerable amount of energy.”

Is there a solution?

One approach may be found in Sinova’s research – an alternative way to process information.

“Our research looks at the spin of electrons, tiny particles that naked eyes cannot detect,” the Texas A&M professor explains. “The directions they spin can be used to record and process information.”

To process information, Sinova says, it is necessary to create information, transmit the information and read the information. How these are done is the big question.

“The device we designed injects the electrons with spin pointing in a particular direction according to the information we want to process, and then we transmit the electrons to another place in the device but with the spin still surviving, and finally we are able to measure the spin direction via a voltage that they produce,” Sinova explains.

The biggest challenge to creating a spin-based device is the distance that the spins will survive in a particular direction.

“Transmission is no problem. You can think for comparison that if the old devices could only transmit the information to several hundred feet away, with our device, information can be easily transmitted to hundreds of miles away,” he says. “It is very efficient.”

Talking about its practical application, Sinova is very optimistic. “This new device, as the only all-semiconductor spin-based device for possible information processing, has a lot of real practical potential,” he says. “One huge thing is that it is operational at room temperature, which nobody has been able to achieve until now. It may bring in a new and much more efficient way to process information.”

Contact: Jairo Sinova at (979) 845-4179 or sinova@physics.tamu.edu or Miao Jingang at miaojingang@tamu.edu.

About research at Texas A&M University: As one of the world’s leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $582 million, which ranks third nationally for universities without a medical school, and underwrites approximately 3,500 sponsored projects. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Jairo Sinova | EurekAlert!
Further information:
http://tamunews.tamu.edu
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>