Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology for bioseparation

18.09.2013
Microfluidics and magnets replace pipettes and test tubes to simplify and improve diagnostics and detection of biomolecules

Separating target molecules in biological samples is a critical part of diagnosing and detecting diseases. Usually the target and probe molecules are mixed and then separated in batch processes that require multiple pipetting, tube washing and extraction steps that can affect accuracy.


This is an illustration showing a simple new technique that is capable of separating tiny amounts of the target molecules from mixed solutions.

Credit: J.Wang/Brown

Now a team of researchers at Brown University has developed a simple new technique that is capable of separating tiny amounts of the target molecules from mixed solutions by single motion of magnet under a microchannel. Their technique may make pipettes and test tubes a thing of the past in some diagnostic applications and increase the accuracy and sensitivity of disease detection.

The new platform developed by Anubhav Tripathi and his team at Brown doesn't rely on external pumps to mix samples or flow target molecules. Instead, their system is static and handy for researchers to use, according to Ms. Jingjing Wang, a graduate student pursuing her PhD. Bead-like magnetic particles are specifically modified by attaching short pieces of DNA to them that can capture target DNA molecules with specific sequences matching. Those are then separated for detection simply by pulling the magnetic beads along the channel. The process is simple, fast and specific.

This process has great applicability particularly for point-of-care platforms that are used to detect bacterial, viral infections and prion diseases by DNA, RNA or protein identification. Specific disease applications include testing for HIV and influenza, explained Wang.

"It can also be used to evaluate the expression of certain protein markers, such as troponin (an indicator of damage to the heart muscle) or any detection that requires binding and separation of known target biomolecules," she added.

Optimizing the system and characterizing the chip for biological assays was the biggest challenge for the research team as it required that both engineering as well as biological factors be considered, however the team is already developing assays using this new platform. A new microchip based Simple Method of Amplifying RNA Targets (SMART) assay developed to detect influenza from patient samples is already showing high agreement with Polymerase Chain Reaction (PCR), which is considered the "gold standard" for influenza diagnosis. The team's next challenge is developing assays using this technique to detect wild type and drug-resistant HIV in areas with limited resources such as Kenya and South Africa.

The article, "Microfluidic Platform for Isolating Nucleic Acid Targets Using Sequence Specific Hybridization" by Jingjing Wang, Kenneth Morabito, Jay X. Tang and Anubhav Tripathi appears in the journal Biomicrofluidics. See: http://dx.doi.org/10.1063/1.4816943

ABOUT THE JOURNAL

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See: http://bmf.aip.org

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aip.org

Further reports about: DNA DNA molecule HIV Little Brown Bats Target viral infection

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>