Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using new technique, scientists uncover a delicate magnetic balance for superconductivity

20.10.2011
Probing the workings of heavy fermion compounds, researchers find that rather than hindering superconductivity, magnetism is an essential ingredient -- and if controlled, may be a key for future advances in the field

A new imaging technology is giving scientists unprecedented views of the processes that affect the flow of electrons through materials.

By modifying a familiar tool in nanoscience – the Scanning Tunneling Microscope – a team at Cornell University's Laboratory for Atomic and Solid State Physics have been able to visualize what happens when they change the electronic structure of a "heavy fermion" compound made of uranium, ruthenium and silicon. What they learned sheds light on superconductivity – the movement of electrons without resistance –which typically occurs at extremely low temperatures and that researchers hope one day to achieve at something close to room temperature, which would revolutionize electronics.

The researchers found that, while at higher-temperatures magnetism is detrimental to superconductivity, at low temperatures in heavy fermion materials, magnetic atoms are a necessity. "We found that removing the magnetic atoms proved detrimental to the flow [of electrons]," said researcher Mohammad Hamidian. This is important, Hamidian explains, because "if we can resolve how superconductivity can co-exist with magnetism, then we have a whole new understanding of superconductivity, which could be applied toward creating high-temperature superconductors. In fact, magnetism at the atomic scale could become a new tuning parameter of how you can change the behavior of new superconducting materials that we make."

To make these findings, the researchers modified a scanning microscope that lets you pull or push electrons into a material. With the modification, the microscope could also measure how hard it was to push and pull – a development that Hamidian explains is also significant. "By doing this, we actually learn a lot about the material's electronic structure. Then by mapping that structure out over a wide area, we can start seeing variations in those electronic states, which come about for quantum-mechanical reasons. Our newest advance, crucial to this paper, was the ability to see at each atom the strength of the interactions that make the electrons 'heavy.'"

The Cornell experiment and its results are presented this week by the Proceedings of the National Academy of Sciences (See PNAS, available online). The research team included J.C. Séamus Davis, a member of the Kavli Institute at Cornell for Nanoscale Science and developer of the SI-STM technique. Working with synthesized samples created by Graeme Luke from McMaster University (Canada), the experiment was designed by Hamidian, a post-doctoral fellow in Davis' research group, along with Andrew R. Schmidt, a former student of Davis at Cornell and now a post-doctoral fellow in physics at UC Berkeley. This research was supported by the DOE's Office of Science, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institute for Advanced Research. Additional collaborators included Ines Firmo of Brookhaven National Laboratory and Cornell, and Andy Schmidt now at the University of California, Berkeley.

For the complete interview with Hamidian, visit: http://www.kavlifoundation.org/science-spotlights/Cornell-disturbing-nanosphere-superconductivity

James Cohen | EurekAlert!
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>