Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using new technique, scientists uncover a delicate magnetic balance for superconductivity

20.10.2011
Probing the workings of heavy fermion compounds, researchers find that rather than hindering superconductivity, magnetism is an essential ingredient -- and if controlled, may be a key for future advances in the field

A new imaging technology is giving scientists unprecedented views of the processes that affect the flow of electrons through materials.

By modifying a familiar tool in nanoscience – the Scanning Tunneling Microscope – a team at Cornell University's Laboratory for Atomic and Solid State Physics have been able to visualize what happens when they change the electronic structure of a "heavy fermion" compound made of uranium, ruthenium and silicon. What they learned sheds light on superconductivity – the movement of electrons without resistance –which typically occurs at extremely low temperatures and that researchers hope one day to achieve at something close to room temperature, which would revolutionize electronics.

The researchers found that, while at higher-temperatures magnetism is detrimental to superconductivity, at low temperatures in heavy fermion materials, magnetic atoms are a necessity. "We found that removing the magnetic atoms proved detrimental to the flow [of electrons]," said researcher Mohammad Hamidian. This is important, Hamidian explains, because "if we can resolve how superconductivity can co-exist with magnetism, then we have a whole new understanding of superconductivity, which could be applied toward creating high-temperature superconductors. In fact, magnetism at the atomic scale could become a new tuning parameter of how you can change the behavior of new superconducting materials that we make."

To make these findings, the researchers modified a scanning microscope that lets you pull or push electrons into a material. With the modification, the microscope could also measure how hard it was to push and pull – a development that Hamidian explains is also significant. "By doing this, we actually learn a lot about the material's electronic structure. Then by mapping that structure out over a wide area, we can start seeing variations in those electronic states, which come about for quantum-mechanical reasons. Our newest advance, crucial to this paper, was the ability to see at each atom the strength of the interactions that make the electrons 'heavy.'"

The Cornell experiment and its results are presented this week by the Proceedings of the National Academy of Sciences (See PNAS, available online). The research team included J.C. Séamus Davis, a member of the Kavli Institute at Cornell for Nanoscale Science and developer of the SI-STM technique. Working with synthesized samples created by Graeme Luke from McMaster University (Canada), the experiment was designed by Hamidian, a post-doctoral fellow in Davis' research group, along with Andrew R. Schmidt, a former student of Davis at Cornell and now a post-doctoral fellow in physics at UC Berkeley. This research was supported by the DOE's Office of Science, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institute for Advanced Research. Additional collaborators included Ines Firmo of Brookhaven National Laboratory and Cornell, and Andy Schmidt now at the University of California, Berkeley.

For the complete interview with Hamidian, visit: http://www.kavlifoundation.org/science-spotlights/Cornell-disturbing-nanosphere-superconductivity

James Cohen | EurekAlert!
Further information:
http://www.kavlifoundation.org

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>