Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Connects Multi-Walled Carbon Nanotubes

31.10.2012
Using a new method for precisely controlling the deposition of carbon, researchers have demonstrated a technique for connecting multi-walled carbon nanotubes to the metallic pads of integrated circuits without the high interface resistance produced by traditional fabrication techniques.

Based on electron beam-induced deposition (EBID), the work is believed to be the first to connect multiple shells of a multi-walled carbon nanotube to metal terminals on a semiconducting substrate, which is relevant to integrated circuit fabrication.

Using this three-dimensional fabrication technique, researchers at the Georgia Institute of Technology developed graphitic nanojoints on both ends of the multi-walled carbon nanotubes, which yielded a 10-fold decrease in resistivity in its connection to metal junctions.

The technique could facilitate the integration of carbon nanotubes as interconnects in next-generation integrated circuits that use both silicon and carbon components. The research was supported by the Semiconductor Research Corporation, and in its early stages, by the National Science Foundation. The work was reported online October 4, 2012, by the journal IEEE Transactions on Nanotechnology.

“For the first time, we have established connections to multiple shells of carbon nanotubes with a technique that is amenable to integration with conventional integrated circuit microfabrication processes,” said Andrei Fedorov, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. “Connecting to multiple shells allows us to dramatically reduce the resistance and move to the next level of device performance.”

In developing the new technique, the researchers relied on modeling to guide their process parameters. To make it scalable for manufacturing, they also worked toward technologies for isolating and aligning individual carbon nanotubes between the metal terminals on a silicon substrate, and for examining the properties of the resulting structures. The researchers believe the technique could also be used to connect multi-layered graphene to metal contacts, though their published research has so far focused on carbon nanotubes.

The low-temperature EBID process takes place in a scanning electron microscope (SEM) system modified for material deposition. The SEM’s vacuum chamber is altered to introduce precursors of the materials that researchers would like to deposit. The electron gun normally used for imaging of nanostructures is instead used to generate low energy secondary electrons when the high energy primary electrons impinge on the substrate at carefully chosen locations. When the secondary electrons interact with hydrocarbon precursor molecules introduced into the SEM chamber, carbon is deposited in desired locations.

Unique to the EBID process, the deposited carbon makes a strong, chemically-bonded connection to the ends of the carbon nanotubes, unlike the weakly-coupled physical interface made in traditional techniques based on metal evaporation. Prior to deposition, the ends of the nanotubes are opened using an etching process, so the deposited carbon grows into the open end of the nanotube to electronically connect multiple shells. Thermal annealing of the carbon after deposition converts it to a crystalline graphitic form that significantly improves electrical conductivity.

“Atom-by-atom, we can build the connection where the electron beam strikes right near the open end of the carbon nanotubes,” Fedorov explained. “The highest rate of deposition occurs where the concentration of precursor is high and there are a lot of secondary electrons. This provides a nanoscale sculpturing tool with three-dimensional control for connecting the open ends of carbon nanotubes on any desired substrate.”

Multi-walled carbon nanotubes offer the promise of higher information delivery throughput for certain interconnects used in electronic devices. Researchers have envisioned a future generation of hybrid devices based on traditional integrated circuits but using interconnects based on carbon nanotubes.

Until now, however, resistance at the connections between the carbon structures and conventional silicon electronics has been too high to make the devices practical.

“The big challenge in this field is to make a connection not just to a single shell of a carbon nanotube,” said Fedorov. “If only the outer wall of a carbon nanotube is connected, you really don’t gain much because most of the transmission channel is under-utilized or not utilized at all.”

The technique developed by Fedorov and his collaborators produces record low resistivity at the connection between the carbon nanotube and the metal pad. The researchers have measured resistance as low as approximately 100 Ohms – a factor of ten lower than the best that had been measured with other connection techniques.

“This technique gives us many new opportunities to go forward with integrating these carbon nanostructures into conventional devices,” he said. “Because it is carbon, this interface has an advantage because its properties are similar to those of the carbon nanotubes to which they are providing a connection.”

The researchers don’t know exactly how many of the carbon nanotube shells are connected, but based on resistance measurements, they believe at least 10 of the approximately 30 conducting shells are contributing to electrical conduction.

However, handling carbon nanotubes poses a significant challenge to their use as interconnects. When formed through the electric arc technique, for example, carbon nanotubes are produced as a tangle of structures with varying lengths and properties, some with mechanical defects. Techniques have been developed to separate out single nanotubes, and to open their ends.

Fedorov and his collaborators – current and former graduate students Songkil Kim, Dhaval Kulkarni, Konrad Rykaczewski and Mathias Henry, along with Georgia Tech professor Vladimir Tsukruk – developed a method for aligning the multi-walled nanotubes across electronic contacts using focused electrical fields in combination with a substrate template created through electron beam lithography. The process has a significantly improved yield of properly aligned carbon nanotubes, with a potential for scalability over a large chip area.

Once the nanotubes are placed into their positions, the carbon is deposited using the EBID process, followed by graphitization. The phase transformation in the carbon interface is monitored using Raman spectroscopy to ensure that the material is transformed into its optimal nanocrystalline graphite state.

“Only by making advances in each of these areas can we achieve this technological advance, which is an enabling technology for nanoelectronics based on carbon materials,” he said. “This is really a critical step for making many different kinds of devices using carbon nanotubes or graphene.”

Before the new technique can be used on a large scale, researchers will have to improve their technique for aligning carbon nanotubes and develop EBID systems able to deposit connectors on multiple devices simultaneously. Advances in parallel electron beam systems may provide a way to mass-produce the connections, Fedorov said.

“A major amount of work remains to be done in this area, but we believe this is possible if industry becomes interested,” he noted. “There are applications where integrating carbon nanotubes into circuits could be very attractive.”

CITATION: Songkil Kim, et.al, Fabrication of an Ultra-Low-Resistance Ohmic Contact to MWCNT-Metal Interconnect Using Graphitic Carbon by Electron Beam Induced Deposition (EBID), IEEE Transactions on Nanotechnology (2012). http://dx.doi.org/10.1109/TNANO.2012.2220377

This research has been supported by the Semiconductor Research Corporation (SRC) under GRC grant 2008OJ1864.1281 and in part by the National Science Foundation (NSF) under grant DMI 0403671. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NSF or the SRC.

| Newswise Science News
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>