Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique for antihydrogen synthesis promises answers to mysteries of antimatter

Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen.

Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen. By enabling scientists to test fundamental theories of symmetry and gravity, the new technique promises to shed light on some of the most profound mysteries of our universe.

One of the most puzzling findings to emerge from modern physics, the existence of antimatter is at the heart of some of the most challenging unsolved problems in science. Why is it that the universe today is made up almost exclusively of matter, and not antimatter? The standard model of particle physics, currently our best theory on the subatomic world, fails to provide an answer to this question.

Instead, scientists believe the answer may lie in tiny differences between the properties of matter and antimatter, manifested in violations of a principle known as CPT (charge, parity, time) symmetry. Antihydrogen, made up of an antiproton and a positron, is attractive for testing CPT symmetry given its simple structure. First produced in large quantities at CERN in 2002, antihydrogen was recently trapped for the first time in a widely-reported study by the international ALPHA collaboration, published last month in Nature.

... more about:
»ASACUSA »Alpha »Antihydrogen »CERN »CPT »Letters »RIKEN »Researchers

The new experimental technique, also developed at CERN in a project called ASACUSA, adopts a novel approach for testing CPT in antihydrogen. Whereas ALPHA focused on high-precision laser spectroscopy measurement of 1S-2S electron transitions, ASACUSA uses high-precision microwave spectroscopy to study much smaller hyperfine transitions. The latter approach does not require that atoms be trapped for their properties to be measured, thus making it possible to study an actual beam of antihydrogen.

The new experimental setup, which produces antihydrogen by colliding positrons and antiprotons in a novel “cusp” trap, is an essential precursor to creating such a beam. Initial findings reported in the journal Physical Review Letters indicate that more than 7% of all antiprotons injected into the trap successfully combine to form antihydrogen, suggesting that tests of CPT symmetry are not far away. Together with the studies on trapped antihydrogen, new experiments promise groundbreaking insights into the nature of antimatter, revolutionizing our understanding of matter and the universe.

For more information, please contact:

Dr. Yasunori Yamazaki
Atomic Physics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9428 / Fax: +81-(0)48-467-8497
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Y. Enomoto, N. Kuroda, K. Michishio, C.H. Kim, H. Higaki, Y. Nagata, Y. Kanai, H.A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao, Y. Nagashima, Y. Matsuda, B. Juhasz, A. Mohri, and Y. Yamazaki. Synthesis of Cold Antihydrogen in a Cusp Trap. Physical Review Letters (2010).

gro-pr | Research asia research news
Further information:

Further reports about: ASACUSA Alpha Antihydrogen CERN CPT Letters RIKEN Researchers

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>