Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique for antihydrogen synthesis promises answers to mysteries of antimatter

08.12.2010
Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen.

Researchers at RIKEN, Japan’s flagship research institution, have successfully devised the world’s first experimental technique for measuring ground-state hyperfine transitions of antihydrogen. By enabling scientists to test fundamental theories of symmetry and gravity, the new technique promises to shed light on some of the most profound mysteries of our universe.

One of the most puzzling findings to emerge from modern physics, the existence of antimatter is at the heart of some of the most challenging unsolved problems in science. Why is it that the universe today is made up almost exclusively of matter, and not antimatter? The standard model of particle physics, currently our best theory on the subatomic world, fails to provide an answer to this question.

Instead, scientists believe the answer may lie in tiny differences between the properties of matter and antimatter, manifested in violations of a principle known as CPT (charge, parity, time) symmetry. Antihydrogen, made up of an antiproton and a positron, is attractive for testing CPT symmetry given its simple structure. First produced in large quantities at CERN in 2002, antihydrogen was recently trapped for the first time in a widely-reported study by the international ALPHA collaboration, published last month in Nature.

... more about:
»ASACUSA »Alpha »Antihydrogen »CERN »CPT »Letters »RIKEN »Researchers

The new experimental technique, also developed at CERN in a project called ASACUSA, adopts a novel approach for testing CPT in antihydrogen. Whereas ALPHA focused on high-precision laser spectroscopy measurement of 1S-2S electron transitions, ASACUSA uses high-precision microwave spectroscopy to study much smaller hyperfine transitions. The latter approach does not require that atoms be trapped for their properties to be measured, thus making it possible to study an actual beam of antihydrogen.

The new experimental setup, which produces antihydrogen by colliding positrons and antiprotons in a novel “cusp” trap, is an essential precursor to creating such a beam. Initial findings reported in the journal Physical Review Letters indicate that more than 7% of all antiprotons injected into the trap successfully combine to form antihydrogen, suggesting that tests of CPT symmetry are not far away. Together with the studies on trapped antihydrogen, new experiments promise groundbreaking insights into the nature of antimatter, revolutionizing our understanding of matter and the universe.

For more information, please contact:

Dr. Yasunori Yamazaki
Atomic Physics Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9428 / Fax: +81-(0)48-467-8497
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reference:
Y. Enomoto, N. Kuroda, K. Michishio, C.H. Kim, H. Higaki, Y. Nagata, Y. Kanai, H.A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao, Y. Nagashima, Y. Matsuda, B. Juhasz, A. Mohri, and Y. Yamazaki. Synthesis of Cold Antihydrogen in a Cusp Trap. Physical Review Letters (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: ASACUSA Alpha Antihydrogen CERN CPT Letters RIKEN Researchers

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>