Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teamwork for turbulence: Network "European High-Performance Infrastructures in Turbulence (EuHIT)"

28.08.2013
European turbulence researches have founded the network EuHIT. It will make the best research facilities available to the community of European researchers from science and industry and will help to improve them.

European turbulence researchers are joining forces: The new network „European High-Performance Infrastructures in Turbulence” (EuHIT) supported by the European Commission aims to support the research field in the next years.


Göttingen is home of a wind tunnel measuring 18 meters in length and six meters in height called Göttingen Turbulence Facility 1. Within this setup, scientists can create turbulent flows under controllable laboratory conditions comparable to the most intense ones found on Earth. credits: MPIDS

For the first time in history, the leading infrastructures in turbulence research will open their gates to scientific and industrial researchers from the European research arena. To this end, 23 research institutions and two industrial partners from ten countries have come together and with the help of the European Union (EU) have created EuHIT.

Thirteen experimental facilities – each of which is unique worldwide – constitute the cornerstones of this endeavor. Until 15. September 2013 researchers from the EU and associated countries can apply for time at one of the facilities. Further calls will follow periodically. In addition, EuHIT will develop the next generation measurement technology to be used in the facilities and other general fluid dynamics applications.

„In the past years, Europe has taken the lead in turbulence research”, says EuHIT-coordinator Prof. Dr. Eberhard Bodenschatz, Managing Director of the Max Planck Institute for Dynamics and Self-Organization in Göttingen (Germany).

This claim is not only supported by the significant output of scientific publications in this field, but also by Europe’s unique experimental facilities. Göttingen, for example, is home of a wind tunnel measuring 18 meters in length and six meters in height called Göttingen Turbulence Facility 1. Within this setup, scientists can create turbulent flows under controllable laboratory conditions comparable to the most intense ones found on Earth, i.e.: inside of clouds or in volcanic eruptions. In Grenoble (France) the CORIOLIS Rotating Platform, a huge, rotating tank with a diameter of 13 meters, allows to study the influence of rotation on turbulence and at the Czech Cryogenic Turbulence Facility in Prague scientists can track movements within a turbulent flow of liquid helium with the help of tiny, frozen flakes of hydrogen.

Further experimental facilities are located in Cottbus (Germany), Erlangen (Germany), Ilmenau (Germany), Genf (Switzerland), Bologna (Italy), Triest (Italy), Predappio (Italy), Villeneuve d'Ascq (France), and Twente (the Netherlands).

„Each of these infrastructures is unique“, explains Bodenschatz. “All in all, Europe offers an amazing potential to unravel the fundamental properties of turbulence and to advance technological applications”, he adds. Until now, however, a well-structured network joining all forces and opening national facilities to other European researchers from science and industry had been missing. In the next years, this gap will be closed by EuHIT. The consortium of 23 research institutions and two industrial partners from the Czech Republic, Denmark, France, Germany, Israel, Italy, the Netherlands, Poland, Romania and Switzerland have joined forces to allow, with the help of the EU, free access to these cutting edge facilities. For example, industrial and academic researchers from the EU and associated countries may apply for experimental time at one of the facilities. The partner institutions offer assistance in data analysis and measurement technology and make their data accessible to other researchers.

„In this way, by breaking national boundaries we provide infrastructures and know-how to all researchers in Europe“, says Bodenschatz. In addition, EuHIT organizes joint research activities for the development of the next generation of measurement technology, which can only be tackled by close collaboration of multiple partners.

Turbulent flows are omnipresent in nature and technical applications and a better understanding is bitter needed. EuHIT will provide the framework to do this. The scientists hope not only to reveal its fundamental principles, but also to contribute to solving important economic and societal questions. This may help, for example, to enhance wind energy yield, predict air and water pollution, improve our understanding of the influence of clouds on climate change, and optimize processes relevant to the chemical industry.

The European Commission will support EuHIT in the next years with seven million Euros.

Deadline for the first call for applications is 15. September 2013. Researchers from Europe and associated countries may participate and submit an application detailing their project. Additional calls will follow periodically. For additional information please see: www.euhit.org.

Dr. Birgit Krummheuer | Max-Planck-Institut
Further information:
http://www.euhit.org
http://www.ds.mpg.de/

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>