Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teamwork for turbulence: Network "European High-Performance Infrastructures in Turbulence (EuHIT)"

28.08.2013
European turbulence researches have founded the network EuHIT. It will make the best research facilities available to the community of European researchers from science and industry and will help to improve them.

European turbulence researchers are joining forces: The new network „European High-Performance Infrastructures in Turbulence” (EuHIT) supported by the European Commission aims to support the research field in the next years.


Göttingen is home of a wind tunnel measuring 18 meters in length and six meters in height called Göttingen Turbulence Facility 1. Within this setup, scientists can create turbulent flows under controllable laboratory conditions comparable to the most intense ones found on Earth. credits: MPIDS

For the first time in history, the leading infrastructures in turbulence research will open their gates to scientific and industrial researchers from the European research arena. To this end, 23 research institutions and two industrial partners from ten countries have come together and with the help of the European Union (EU) have created EuHIT.

Thirteen experimental facilities – each of which is unique worldwide – constitute the cornerstones of this endeavor. Until 15. September 2013 researchers from the EU and associated countries can apply for time at one of the facilities. Further calls will follow periodically. In addition, EuHIT will develop the next generation measurement technology to be used in the facilities and other general fluid dynamics applications.

„In the past years, Europe has taken the lead in turbulence research”, says EuHIT-coordinator Prof. Dr. Eberhard Bodenschatz, Managing Director of the Max Planck Institute for Dynamics and Self-Organization in Göttingen (Germany).

This claim is not only supported by the significant output of scientific publications in this field, but also by Europe’s unique experimental facilities. Göttingen, for example, is home of a wind tunnel measuring 18 meters in length and six meters in height called Göttingen Turbulence Facility 1. Within this setup, scientists can create turbulent flows under controllable laboratory conditions comparable to the most intense ones found on Earth, i.e.: inside of clouds or in volcanic eruptions. In Grenoble (France) the CORIOLIS Rotating Platform, a huge, rotating tank with a diameter of 13 meters, allows to study the influence of rotation on turbulence and at the Czech Cryogenic Turbulence Facility in Prague scientists can track movements within a turbulent flow of liquid helium with the help of tiny, frozen flakes of hydrogen.

Further experimental facilities are located in Cottbus (Germany), Erlangen (Germany), Ilmenau (Germany), Genf (Switzerland), Bologna (Italy), Triest (Italy), Predappio (Italy), Villeneuve d'Ascq (France), and Twente (the Netherlands).

„Each of these infrastructures is unique“, explains Bodenschatz. “All in all, Europe offers an amazing potential to unravel the fundamental properties of turbulence and to advance technological applications”, he adds. Until now, however, a well-structured network joining all forces and opening national facilities to other European researchers from science and industry had been missing. In the next years, this gap will be closed by EuHIT. The consortium of 23 research institutions and two industrial partners from the Czech Republic, Denmark, France, Germany, Israel, Italy, the Netherlands, Poland, Romania and Switzerland have joined forces to allow, with the help of the EU, free access to these cutting edge facilities. For example, industrial and academic researchers from the EU and associated countries may apply for experimental time at one of the facilities. The partner institutions offer assistance in data analysis and measurement technology and make their data accessible to other researchers.

„In this way, by breaking national boundaries we provide infrastructures and know-how to all researchers in Europe“, says Bodenschatz. In addition, EuHIT organizes joint research activities for the development of the next generation of measurement technology, which can only be tackled by close collaboration of multiple partners.

Turbulent flows are omnipresent in nature and technical applications and a better understanding is bitter needed. EuHIT will provide the framework to do this. The scientists hope not only to reveal its fundamental principles, but also to contribute to solving important economic and societal questions. This may help, for example, to enhance wind energy yield, predict air and water pollution, improve our understanding of the influence of clouds on climate change, and optimize processes relevant to the chemical industry.

The European Commission will support EuHIT in the next years with seven million Euros.

Deadline for the first call for applications is 15. September 2013. Researchers from Europe and associated countries may participate and submit an application detailing their project. Additional calls will follow periodically. For additional information please see: www.euhit.org.

Dr. Birgit Krummheuer | Max-Planck-Institut
Further information:
http://www.euhit.org
http://www.ds.mpg.de/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>