Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by scientists from University of the Basque Country manage to measure wind details of Venus

03.09.2008
Venus is a planet similar in size to the Earth. Nevertheless, it is quite different in other aspects.

On the one hand, it spins very slowly on its axis, taking 224 terrestrial days and, moreover, it does so in the opposite direction to that of our planet, i.e. from East to West.

Its dense atmosphere of carbon dioxide with surface pressures 90 times that of Earth (equivalent to what we find at 1000 metres below the surface of our oceans), causes a runaway greenhouse effect that raises the surface temperatures up to 450ºC, to such as extent that metals like lead are in a liquid state on Venus. At a height of between 45 km and 70 km above the surface there are dense layers of sulphuric acid clouds totally covering the planet.

It was in the 1960s that they discovered, by means of telescopic observations, that the top level of cloud layers moved very rapidly, orbiting the planet in only four days, compared to the planet’s own orbit of 224 days. This phenomenon was baptised the “superotation” of Venus: the winds carrying these clouds travel at 360 km/h.

The various space missions that explored the planet in the 70s and 80s showed that the “superotation” was a permanent phenomenon and, moreover the probes that descended through its atmosphere indicated that, in a number of places, the winds decreased in speed to zero at Venus’s surface. New observations carried out with the Venus Express mission of the European Space Agency, in orbit around Venus since April 2006, have enabled the team of scientists from the University of the Basque Country (UPV/EHU) to determine in detail the global structure of the winds on Venus at its level of clouds while, at the same time, to observe unexpected changes in the wind speeds, and which helped to interpret this mysterious phenomenon.

The team was led by Agustín Sánchez Lavega with team members being Ricardo Hueso, Santiago Pérez Hoyos and Javier Peralta, from the Planetary Sciences Group at the Higher Technical Engineering School of Bilbao. The article, entitled “Variable winds on Venus mapped in three dimensions”, was published with front page coverage in the Geophysical Research Letters. This journal is published by the US American Geophysical Union (AGU) and is the most prestigious in its sphere of research. Moreover, the article was one of eight selected amongst hundreds for publication by the AGU in all journals as being the most outstanding in the EOS Transactions bulletin – sent to 50,000 AGU members at research centres all over the world.

Novel aspects of the rotation

Using images recorded by both day and night on Venus with the VIRTIS spectral camera on board the Venus Express, the UPV/EHU scientists have succeeded in measuring these clouds over several months and have discovered new aspects of the “superotation”. Firstly, between the equator and the median latitudes of the planet there dominates a superotation with constant winds blowing from East to West, within the clouds decreasing speed with height from 370 km/h to 180 km/h. At these median latitudes, the winds decrease to a standstill at the pole, where an immense vortex forms.

Other aspects of the superrotation that observations with VIRTIS have made possible are that the meridional (North – South) movements are very weak, about 15 km/h, and, secondly, unlike what was previously believed, the superotation appears to be not so constant over time: “We have detected fluctuations in its speed that we do not yet understand”, stated the scientists. Moreover, for the first time they observed “the solar thermal tide” effect at high latitudes on Venus. “The relative movement of the Sun on the clouds and the intense heat deposited on them makes the superotation more intense at sunset than at sunrise”, they stated.

“Despite all the data brought together, we are still not able to explain why a planet than spins so slowly has hurricane global winds that are much more intense than terrestrial ones and are, moreover, concentrated at the top of its clouds” stated Mr Sánchez Lavega. This study has enabled advances to be made in a precise explanation of the origin of superotation in Venusian winds as well as in the knowledge of the general circulation of planetary atmospheres.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1855&hizk=I

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>