Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team led by scientists from University of the Basque Country manage to measure wind details of Venus

03.09.2008
Venus is a planet similar in size to the Earth. Nevertheless, it is quite different in other aspects.

On the one hand, it spins very slowly on its axis, taking 224 terrestrial days and, moreover, it does so in the opposite direction to that of our planet, i.e. from East to West.

Its dense atmosphere of carbon dioxide with surface pressures 90 times that of Earth (equivalent to what we find at 1000 metres below the surface of our oceans), causes a runaway greenhouse effect that raises the surface temperatures up to 450ºC, to such as extent that metals like lead are in a liquid state on Venus. At a height of between 45 km and 70 km above the surface there are dense layers of sulphuric acid clouds totally covering the planet.

It was in the 1960s that they discovered, by means of telescopic observations, that the top level of cloud layers moved very rapidly, orbiting the planet in only four days, compared to the planet’s own orbit of 224 days. This phenomenon was baptised the “superotation” of Venus: the winds carrying these clouds travel at 360 km/h.

The various space missions that explored the planet in the 70s and 80s showed that the “superotation” was a permanent phenomenon and, moreover the probes that descended through its atmosphere indicated that, in a number of places, the winds decreased in speed to zero at Venus’s surface. New observations carried out with the Venus Express mission of the European Space Agency, in orbit around Venus since April 2006, have enabled the team of scientists from the University of the Basque Country (UPV/EHU) to determine in detail the global structure of the winds on Venus at its level of clouds while, at the same time, to observe unexpected changes in the wind speeds, and which helped to interpret this mysterious phenomenon.

The team was led by Agustín Sánchez Lavega with team members being Ricardo Hueso, Santiago Pérez Hoyos and Javier Peralta, from the Planetary Sciences Group at the Higher Technical Engineering School of Bilbao. The article, entitled “Variable winds on Venus mapped in three dimensions”, was published with front page coverage in the Geophysical Research Letters. This journal is published by the US American Geophysical Union (AGU) and is the most prestigious in its sphere of research. Moreover, the article was one of eight selected amongst hundreds for publication by the AGU in all journals as being the most outstanding in the EOS Transactions bulletin – sent to 50,000 AGU members at research centres all over the world.

Novel aspects of the rotation

Using images recorded by both day and night on Venus with the VIRTIS spectral camera on board the Venus Express, the UPV/EHU scientists have succeeded in measuring these clouds over several months and have discovered new aspects of the “superotation”. Firstly, between the equator and the median latitudes of the planet there dominates a superotation with constant winds blowing from East to West, within the clouds decreasing speed with height from 370 km/h to 180 km/h. At these median latitudes, the winds decrease to a standstill at the pole, where an immense vortex forms.

Other aspects of the superrotation that observations with VIRTIS have made possible are that the meridional (North – South) movements are very weak, about 15 km/h, and, secondly, unlike what was previously believed, the superotation appears to be not so constant over time: “We have detected fluctuations in its speed that we do not yet understand”, stated the scientists. Moreover, for the first time they observed “the solar thermal tide” effect at high latitudes on Venus. “The relative movement of the Sun on the clouds and the intense heat deposited on them makes the superotation more intense at sunset than at sunrise”, they stated.

“Despite all the data brought together, we are still not able to explain why a planet than spins so slowly has hurricane global winds that are much more intense than terrestrial ones and are, moreover, concentrated at the top of its clouds” stated Mr Sánchez Lavega. This study has enabled advances to be made in a precise explanation of the origin of superotation in Venusian winds as well as in the knowledge of the general circulation of planetary atmospheres.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1855&hizk=I

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>