Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TDRS-4 Mission Complete; Spacecraft Retired From Active Service

09.05.2012
The Tracking and Data Relay Satellite 4 (TDRS-4) recently completed almost 23 years of operations support and successfully completed end-of-mission de-orbit and decommissioning activities. TDRS-4's operational life span was well beyond its original 10-year design.

Launched on March 13, 1989, from onboard Space Shuttle Discovery, TDRS-4 operated in geosynchronous (GEO) altitude at more than 22,000 miles above the Atlantic Ocean region. As part of the spacecraft's end-of-mission activities, its orbit was raised above the congested geosynchronous orbit.


An Artist Rendering of TDRS-4.
Credit: NASA

TDRS-4 was forced to retire after the loss of one of three Nickel-Cadmium (24 cell) batteries and the reduction in storage capacity for the two remaining batteries that power the satellite. Retirement for the satellite consisted of excess fuel depletion, disconnecting batteries, and powering down the Radio Frequency Transmitters and receivers so that the satellite is completely and permanently passive. This ensures the satellite will never interfere with other satellites from the radio frequency perspective.

This is the second retirement from within the fleet of TDRS. The fleet of seven remaining satellites operates through a supporting ground system and together they make up the Space Network (SN). The SN provides highly automated, user-driven services supporting customer spacecraft with tracking and data acquisition. The network supports a varied number of missions, including the International Space Station, Hubble Space Telescope, launch vehicles, and a variety of other science missions. The SN also provided primary communication support to the Space Shuttle Project.

"The Space Network spacecraft engineering and operations teams worked together very effectively to execute a practically flawless decommissioning of an incredible satellite," says Mike Rackley, SN deputy project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. "TDRS-4 made great and important contributions to NASA's human spaceflight and science missions. We will certainly miss her."

This is the second end-of-mission execution for the fleet of aging first generation TDRS spacecraft. TDRS-4's retirement was preceded by TDRS-1, which was decommissioned and raised to its permanent orbit in June 2010.

A total of six first generation spacecraft were successfully placed into orbit from April 1983 through July 1995, of which four are still active. The spacecraft are approaching the end of their operational life span but they are supplemented by three, second-generation spacecraft.

Together they provide customers with global space to ground communication services.

To continue this critical lifeline, NASA has contracted Boeing to build three additional follow-on TDRS spacecraft, replenishing TDRS-1 and TDRS-4, and expanding NASA's communication services. TDRS-K is scheduled for launch in December of this year followed by TDRS-L in 2013 and TDRS-M in 2015.

The SN is managed by GSFC and its primary ground communications facility is located at the White Sands Complex in Las Cruses, NM. The Human Exploration and Operations Mission Directorate and the Space Communications and Navigation Program at NASA Headquarters fund NASA's Space Network.

Nicole Hagey and Dewayne Washington
NASA's Goddard Space Flight Center, Greenbelt, Md.

Dewayne Washington | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/tdrs4-retired.html

Further reports about: Active Agents Goddard Space Flight Center Greenbelt NASA Shuttle Space TDRS-4 spacecraft

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>