Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TDRS-4 Mission Complete; Spacecraft Retired From Active Service

09.05.2012
The Tracking and Data Relay Satellite 4 (TDRS-4) recently completed almost 23 years of operations support and successfully completed end-of-mission de-orbit and decommissioning activities. TDRS-4's operational life span was well beyond its original 10-year design.

Launched on March 13, 1989, from onboard Space Shuttle Discovery, TDRS-4 operated in geosynchronous (GEO) altitude at more than 22,000 miles above the Atlantic Ocean region. As part of the spacecraft's end-of-mission activities, its orbit was raised above the congested geosynchronous orbit.


An Artist Rendering of TDRS-4.
Credit: NASA

TDRS-4 was forced to retire after the loss of one of three Nickel-Cadmium (24 cell) batteries and the reduction in storage capacity for the two remaining batteries that power the satellite. Retirement for the satellite consisted of excess fuel depletion, disconnecting batteries, and powering down the Radio Frequency Transmitters and receivers so that the satellite is completely and permanently passive. This ensures the satellite will never interfere with other satellites from the radio frequency perspective.

This is the second retirement from within the fleet of TDRS. The fleet of seven remaining satellites operates through a supporting ground system and together they make up the Space Network (SN). The SN provides highly automated, user-driven services supporting customer spacecraft with tracking and data acquisition. The network supports a varied number of missions, including the International Space Station, Hubble Space Telescope, launch vehicles, and a variety of other science missions. The SN also provided primary communication support to the Space Shuttle Project.

"The Space Network spacecraft engineering and operations teams worked together very effectively to execute a practically flawless decommissioning of an incredible satellite," says Mike Rackley, SN deputy project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. "TDRS-4 made great and important contributions to NASA's human spaceflight and science missions. We will certainly miss her."

This is the second end-of-mission execution for the fleet of aging first generation TDRS spacecraft. TDRS-4's retirement was preceded by TDRS-1, which was decommissioned and raised to its permanent orbit in June 2010.

A total of six first generation spacecraft were successfully placed into orbit from April 1983 through July 1995, of which four are still active. The spacecraft are approaching the end of their operational life span but they are supplemented by three, second-generation spacecraft.

Together they provide customers with global space to ground communication services.

To continue this critical lifeline, NASA has contracted Boeing to build three additional follow-on TDRS spacecraft, replenishing TDRS-1 and TDRS-4, and expanding NASA's communication services. TDRS-K is scheduled for launch in December of this year followed by TDRS-L in 2013 and TDRS-M in 2015.

The SN is managed by GSFC and its primary ground communications facility is located at the White Sands Complex in Las Cruses, NM. The Human Exploration and Operations Mission Directorate and the Space Communications and Navigation Program at NASA Headquarters fund NASA's Space Network.

Nicole Hagey and Dewayne Washington
NASA's Goddard Space Flight Center, Greenbelt, Md.

Dewayne Washington | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/tdrs4-retired.html

Further reports about: Active Agents Goddard Space Flight Center Greenbelt NASA Shuttle Space TDRS-4 spacecraft

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>