Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taming Light

09.09.2011
Physicists of the Max Planck Institute of Quantum Optics have generated for the first time “white” light pulses and they are able to control their field on a time scale shorter than an optical oscillation.

These new tools hold promise for unprecedented control of the motion of electrons in the microcosm.


A light field synthesizer divides incident white light into three color channels and modifies it afterwards. The composition creates laser pulses with a complex, however fine adjustable waveform.
Figure: Thorsten Naeser

An expedition through the fast-paced microscopic world of atoms reveals electrons that spin around at an enormous speed and that gigantic forces are acting on them. Monitoring the ultrafast motion of these electrons requires ultrashort flashes of light. However, in order to control them, the structure of these light flashes, or light pulses, needs to be tamed as well. This type of control over light pulses has now, for the first time, been achieved by a team of physicists lead by Dr. Eleftherios Goulielmakis and Prof. Ferenc Krausz of the Laboratory of Attosecond Physics at the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-University (LMU Munich), along with collaborators from the Center of Free-Electron Laser Science (DESY Hamburg) and the King Saud University (Saudi Arabia). Taking advantage of the fact that light possesses both particle-like and wave-like properties, they have sculpted fine features into the waveform of these pulses of white light. Additionally, the researchers were able to make their pulses shorter than a complete light oscillation, thereby creating for the first time isolated sub-optical-cycle flashes of light. Not only will these novel tools allow for the precise control of electron motion in the fundamental building blocks of matter, they will also enhance the tracing of subatomic processes and will permit a more precise timing of electronic processes in molecules and atoms. The results of the research are published in the scientific magazine SCIENCE (SCIENCE Express 8.9.2011).

The motion of electrons in the microcosm occurs on an attosecond time scale, where one attosecond is a billionth of a billionth of a second. On such a short scale, only light itself is able to keep up with the motion. Because of the fast oscillations of its electromagnetic field, light can act somewhat like a pair of tweezers on electrons, influencing their motions and interactions. The time it takes light, generated by modern laser sources, to complete one full oscillation amounts to around 2.6 femtoseconds, where one femtosecond is a thousand attoseconds, or one millionth of a billionth of a second.

That is the reason why light is a promising tool for controlling electron dynamics in the microcosm. Yet, before this can become reality, the light’s field oscillations have to be tamed, i.e. its field has to be precisely and completely controllable on a time scale which is shorter than one full oscillation cycle. In order to achieve this lofty goal, one first has to learn how to develop and perfect these extraordinary tweezers.

The international team at MPQ around Dr. Eleftherios Goulielmakis and Prof. Ferenc Krausz has now mastered a big step towards this ambitious aim, managing to sculpt wave forms of laser pulses with a sub-cycle precision.

In order to control light pulses on a sub-cycle time scale, it is necessary to use white laser light, as it contains wavelengths (light colors) ranging from the near-ultraviolet, over the visible, all the way to the near infrared region of the electromagnetic spectrum. The physicists have created these light pulses and sent them into a newly developed “light field synthesizer”. The light field synthesizer is analogous to a sound synthesizer, as used by electronic musicians. Just as the sound synthesizer, which superimposes sound waves of different frequencies to create different sounds and beats, the light field synthesizer superimposes optical waves of different colors and phases to create various field shapes. The apparatus first splits the incident white laser light into red, yellow and blue color channels. After manipulating the properties of the individual colors, they are recombined to form the synthesized wave form. Several components of this novel device, e.g. its mirrors and its elaborate beam splitters, were developed in the service center of the Munich Centre for Advanced Photonics (MAP) located at the LMU.

Utilizing this technology, the scientists achieved the generation of completely new isolated waveforms. Furthermore, in doing so they managed to compose the shortest pulses ever measured in the visible spectral range, lasting only 2.1 femtoseconds. These pulses are more intense than the ones commonly afforded by current femtosecond light sources because all the energy of the electromagnetic field is confined into a tiny temporal window.

It is precisely these powerful and specially tailored electromagnetic forces which are necessary to control electrons in atoms and molecules, as they are similar in strength to the forces occurring in such microscopic systems. However, to steer electron motion on a microscopic scale, strength is not the only prerequisite because precision is also needed. This level of desired precision is provided by the well-controlled wave forms of the synthesized light pulses.

Thanks to these latest results, the scientists have accomplished a major step towards the control of the microcosm. “These newly developed tools allow us to initiate, control and therefore further understand inner-atomic processes. With these devices, we can master the fine structuring of ultrashort light fields and reliably measure the newly formed light”, explains Dr. Adrian Wirth, Postdoctoral Fellow in the research team of Dr. Eleftherios Goulielmakis, leader of the ERC-research group “Attoelectronics”.

As a matter of fact, the physicists have already applied this novel technique in an experiment. By shining the newly designed light pulses onto krypton atoms, the outermost electron was ripped away within less than 700 attoseconds, marking the fastest electronic process which has been initiated by optically visible light. Similar processes can certainly be achieved in more complex systems such as molecules, solids and nanoparticles.

This new technology may very well lead the way towards light-based electronics in the future. Light fields are expected to drive electrons not only in isolated systems such as atoms or molecules, but even on microscopic circuits so as to perform logic operations at unprecedented speeds” said Dr. Goulielmakis, whose group is exploring the principles of electronics on these extreme time scales. “We are progressively increasing our understanding of the principles in the microcosm and learning how to control it”, adds Ferenc Krausz.

[Thorsten Naeser]

Additional material is available at:
http://www.attoworld.de/Home/newsAndPress/Gallery/index.html
Original Publication:
A.Wirth, M.Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz & E. Goulielmakis

Synthesized Light Transients, SCIENCE Express, 8 September 2011

For further information please contact:

Dr. Eleftherios Goulielmakis
Max Planck Institute of Quantum Optics,
Garching
Tel: +49 89 32 905-632
Fax: +49 89 32 905-200
Email: elgo@mpq.mpg.de
http://www.attoworld.de/goulielmakis-group/
Prof. Ferenc Krausz
Max Planck Institute of Quantum Optics,
Garching
Tel: +49 89 32905-612
Fax: +49 89 32905-649
Email: ferenc.krausz@mpq.mpg.de
http://www.attoworld.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.attoworld.de
http://www.attoworld.de/goulielmakis-group/

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>