Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Twinkle out of the Night Sky

05.08.2010
A breakthrough in adaptive optics allows astronomers to obtain space-telescope quality images over a wide field of view – here on Earth.

If you are like most people, you probably enjoy the twinkling of stars that blanket the sky on a clear summer night. If you are an astronomer, chances are you find it extremely annoying.

A team of University of Arizona astronomers led by Michael Hart has developed a technique that allows them to switch off the twinkling over a wide field of view, enabling Earth-based telescopes to obtain images as crisp as those taken with the Hubble Space Telescope, and much more quickly.

They describe the technique, called laser adaptive optics, in the Aug. 5 issue of Nature.

Atmospheric turbulence blurs the light from celestial objects by the time it reaches the mirror of a ground-based telescope. Most of the distortion happens less than a half mile above ground, where heat rising from the surface ruffles the air.

Think of laser adaptive optics as noise-canceling headphones, only for light waves instead of sound waves. A bundle of laser beams and a pliable mirror in the telescope optics form the heart of the system.

From their observatory on Mount Hopkins south of Tucson, Ariz., Hart and his group point a bundle of green laser beams into the night sky. Some of the laser light bounces off oxygen and nitrogen molecules high up in the atmosphere, creating five artificial stars spread across the field of view.

"We observe what the turbulence in the atmosphere does to them," explains Hart, a professor of astronomy in UA's Steward Observatory and department of astronomy. "The light that is reflected back tells us what we need to know about the turbulence."

The turbulence data are then fed into a computer that controls the adaptive mirror, whose back side is studded with so-called actuators, small magnetic pins surrounded by coils.

When the computer sends electric currents through the coils, the actuators move, not unlike a loudspeaker translates electric signals from an amplifier into movements of the sound membranes. Hart's adaptive mirror has 336 actuators glued to its back side that cause the mirror to warp just enough to cancel out the flickering caused by the atmosphere. The corrective movements are too tiny for the human eye to see and happen a thousand times each second.

The difference between a telescope with adaptive optics and one without is similar to a camera with a built-in image stabilizer compared to one without.

According to Hart, astronomers and engineers have advanced adaptive optics considerably over the past 15 to 20 years, but until now, the technology was fraught with a fundamental limitation: Atmospheric blurring could only be removed along a very narrow line of sight.

"It's like being able to see sharp through a pin hole, while the rest of your field of view looks like frosted glass," said Hart. "Our technique makes the pin hole much bigger."

The laws of physics impose a trade-off between field of view and resolution. Hart's group sacrifices some of the very high resolution to gain a larger field of view, but for many science endeavors this trade-off is well worth taking, he said.

One such endeavor is the study of very old galaxies that formed around 10 billion years ago when the universe was less than a quarter of its current age. Known to astronomers as high red-shift galaxies, these objects are billions of light years away.

"To understand the evolution of those ancient galaxies, we have to observe thousands of them and study their spectral characteristics and chemical composition," Hart said, "and taking a spectrum of a high red-shift galaxy takes a long time because they are so faint."

"With our new adaptive optics technique, you can now observe dozens at a time. Sampling thousands of galaxies' spectra becomes feasible."

Supermassive star clusters are another example.

"In those clusters, stars are being born as we speak and that's where we have to point our telescopes to learn about the processes that drive star formation."

"There is still a lot that remains mysterious," Hart added, "mostly because these clusters extend over several fields of view and are jam-packed with stars that seem to run into each other unless you can get a super-sharp image."

But before astronomers can even begin to analyze light spectra of the stars in the cluster, they have to disentangle them first.

"You need to know which stars are actually part of the cluster and which ones only happen to be in your line of sight," Hart explains. "To do that, you compare images taken a year or so apart. If you find stars that have moved in the meantime, it means they are not gravitationally bound to the cluster. It is much easier to pinpoint the position of a star if you have an image that is sharp rather than fuzzy."

With the new adaptive optics system, entire star clusters may be examined in a single pointing, the authors write in their article.

Hart's group expects their technique to be applied on very large telescopes such as the Giant Magellan Telescope, which is being developed by astronomers at the University of Arizona and elsewhere.

"We haven't yet tapped out the limit of our adaptive optics system," Hart said. "We can now cancel the atmospheric turbulence over a field of two arc minutes, which is about the diameter of one-fifteenth of a full moon."

At the cosmic distances of deep space, that's a lot of star clusters and a lot of high red-shift galaxies.

Hart's co-authors on the paper are: Mark Milton, Christoph Baranec (now at Caltech Optical Observatories, Pasadena, Calif.), Keith Powell, Thomas Stalcup (Keck Observatory, Hawaii), Don McCarthy, Craig Kulesa and Eduardo Bendek.

The National Science Foundation funded the work.

CONTACTS:

Michael Hart, University of Arizona, Department of Astronomy, mhart@as.arizona.edu, (520) 621-8353

Daniel Stolte, University of Arizona Office of Communications, (520) 626-4402; stolte@email.arizona.edu

LINKS:

Research paper in Nature: http://www.nature.com/nature/journal/v466/n7307/full/nature09311.html

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu
http://www.nature.com/nature/journal/v466/n7307/full/nature09311.html

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>