Table top plasma gets wind of solar turbulence

(a) A pump pulse creates the plasma on a solid while a probe pulse monitors the time evolution. The top panel in b shows the spatially randomized magnetic field in the plasma while the figure at the bottom shows the power spectrum of the magnetic field (magnetic energy density variation of with inverse of spatial length. The curve indicates magnetic turbulence in the plasma and mimics that from the solar wind. Credit: G. Chatterjee et al., Nature Communications, 10.1038/NCOMMS15970

Turbulence is everywhere- from tea cups to tokomaks and from water jets to weather systems, it is something we all see and experience. Yet, even after centuries of serious scientific study, fluid turbulence is still not properly understood and remains “Interesting. Vexing. Longstanding. Unsolved.”[1]. While it is difficult to define turbulence simply, it has many recognizable features, the most common being the fluctuations in parameters like velocity and pressure, indicating randomization of the flow [2].

By the way, turbulence is not all bad and destructive as you might feel when tossed around on a flight during bad weather. One good feature is that it enables much faster mixing than possible only with normal, slow diffusion. For instance, the sugar you added in your cup of tea this morning would have taken hours and days to disperse but for your stirring which caused your tea to become turbulent.

As you have surely noticed, you stirred the tea in a large circle, but the swirling spread to smaller and smaller lengths and eventually, the mixing occurred at the molecular level. The end result? Even the smallest drop of tea is as sweet as a large gulp! Turbulence also helps in mixing fuel and oxygen for efficient combustion in engines.

Much of our universe is of course not an ordinary fluid but consists of highly ionized gas known as plasma and this plasma can often be extremely hot and swirling at unimaginable speeds. Turbulence in a plasma is much more complex than that in neutral hydrodynamic fluids.

In a charged plasma environment, the negatively charged, light electrons and positive heavy ions respond at vastly different length and time scales. The motion of these charged species is governed by electromagnetic forces and the current flow through the charge particle dynamics leads to magnetic field generation. Therefore the randomness of magnetic fields often mimics the fluid turbulence in plasmas.

The team of scientists leading this new study, at the Tata Institute of Fundamental Research, Mumbai, Institute of Plasma Research, Gandhinagar (both in India) and at the Instituto Superior Tecnico, Universidade de Lisboa, Portugal find that the turbulence in the magnetic field is initially driven by the electrons (at a trillionth of a second) and the ions step in and take over at longer times.

This is the first time such a 'relay race' involving two different species has been glimpsed. Further, these lab observations have an uncanny resemblance to the satellite data on the magnetic field spectra measured for turbulent astrophysical plasmas in the solar wind, solar photosphere and earth's magnetosheath. Although in the laser experiment the electrons in the plasma get energised initially, the ion dominant response that kicks in at later times shows spectral features similar to those in the astro systems.

These experiments thus establish clear connections between the two scenarios, even though the driver of turbulence in the lab plasma is very different from that in the astrophysical system.

Now that we have got wind of solar turbulence on a table top, can we use lab experiments to turn the tables on the intractable problem of turbulence? Well, that may still be a long way off but it is a tantalising prospect that reliable measurements in the lab might make us better and better at peeking into turbulent stellar scenarios.

And that should set off stars in our eyes!

###

References:

[1] L.P. Kadanoff, Physics Today, Vol. 48, no.9, p11 (1995)
[2] K.R. Sreenivasan, McGraw-Hill Encyclopaedia of Science and Technology, 10th Edn., Vol. 18, p725.
[3] G. Chatterjee et al., Nature Communications, 10.1038/NCOMMS15970 (2017)

Media Contact

G. Ravindra Kumar
grk@tifr.res.in
91-998-773-7422

http://www.tifr.res.in 

Media Contact

G. Ravindra Kumar EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors