Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The First T2K Neutrino Event Observed at Super-Kamiokande

26.02.2010
Physicists from the Japanese-led multinational T2K collaboration announced today that they had made the first detection of a neutrino which had travelled all the way under Japan from their neutrino beamline at the J-PARC facility in Tokai village (about an hour north of Tokyo by train) to the gigantic Super-Kamiokande underground detector near the west coast of Japan, 295 km (185 miles) away from Tokai. Stony Brook University has been the leading US institution in the T2K experiment.

"It is a big step forward," said T2K spokesperson Takashi Kobayashi. "We've been working hard for more than 10 years to make this happen."

They have constructed their new neutrino beamline, which will deliver the world’s most powerful neutrino beams, to study the mysterious phenomenon known as neutrino oscillations, and the observation of this event proves that their study can now begin.

"Neutrinos are the elusive ghosts of particle physics," Kobayashi explains. "They come in three types, called electron neutrinos, muon neutrinos, and tau neutrinos, which used to be thought to be immutable."

Interacting only weakly with matter, neutrinos can traverse the entire earth with vastly less attenuation than light passing through a window. The very weakness of their interactions allows physicists to make what should be very accurate predictions of their behavior, and thus it came as a shock when measurements of the flux of neutrinos coming from the thermonuclear reactions which power our sun were far lower than predicted."

A second anomaly was then demonstrated by Super-Kamiokande, when it showed that the flux of different types of neutrino generated within our atmosphere by cosmic ray interactions was different depending on whether the neutrinos were coming from above or below (which should not have been possible given our understanding of particle physics). Other experiments, such as KamLAND (also performed at Kamioka), have conclusively demonstrated that these anomalies are caused by neutrino oscillations, whereby one type of neutrino turns into another.

"Congratulations from CERN on the first T2K neutrino event seen at Super-Kamiokande," said CERN Director General Rolf Heuer. "Switching on the world's first neutrino superbeam is a great achievement, and is set to bring great advances in the understanding of this most elusive of particles. Even in a time of financial difficulty around the globe, it's important not to lose sight of the fact that basic science is and always will be a crucial element of progress. It is therefore heartening to see such an important new basic science initiative getting underway now."

"Watching this event is as mesmerizing as watching an Olympic athlete skating the perfect program on the way to a Gold Medal; it is stunningly beautiful to my eyes," said Professor Chang Kee Jung of Stony Brook University, leader of the US T2K project. "Of course this is the result of many years of hard work by more than 500 international collaborators."

The T2K experiment has been built to make measurements of unprecedented precision of known neutrino oscillations, and to look for a so-far unobserved type of oscillation which would cause a small fraction of the muon neutrinos produced at J-PARC to become electron neutrinos by the time they reach Super-Kamiokande.

"This first neutrino event marks a great achievement for T2K and a milestone for the fast-growing field of neutrino physics worldwide," said Fermilab Director Pier Oddone. "We send warmest congratulations from Fermilab, along with our best wishes for the exciting science that will follow."

Prof. Dr. Joachim Mnich, Director in charge of High Energy Physics and Astroparticle Physics at DESY also notes: "Warmest congratulations from DESY on seeing the first neutrino event and thus becoming leader in the race to understand the elusive neutrino! Through our long history of collaboration with Japanese scientists and labs we value your work most highly and hope that the T2K project will help make the neutrino less elusive."

Observing the new type of oscillation would open the prospect of comparing the oscillations of neutrinos and anti-neutrinos, which many theorists believe may be related to one of the great mysteries in fundamental physics -- why is there more matter than anti-matter in the universe? The observation of this first neutrino (see figure) means that the hunt has just begun!

Background: The T2K collaboration consists of 508 physicists from 62 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beamline using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super-Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S.
Department of energy. It consists of 80 physicists from 11 institutions
(Boston University, Brookhaven National Laboratory, University of California, Irvine, University of Colorado, Boulder, Colorado State University,
Duke University, Louisiana State University, University of Pittsburgh,
University of Rochester, Stony Brook University, and University of Washington).
The complete list of institutions can be found at: http://neutrino.kek.jp/t2k/T2KInstitutions.pdf
The T2K experiment would like to thank the following funding agencies for their generous support:
Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
The Department of Energy, the United States
The Natural Science and Engineering Research Council, Canada
The National Research Council, Canada
The Science and Technology Facilities Council, the United Kingdom
Institut National de Physique Nucléaire et de Physique de Particules (IN2P3), France
Commissariat à l’Énergie Atomique (CEA), France
Istituto Nazionale di Fisica Nucleare (INFN), Italy
Ministerio de Ciencia e Innovacion , Spain
Ministry of Science and Higher Education, Poland
Russian Ministry of Science and Technology, Russia
Deutsche Forschungsgemeinschaft, Germany
Ministry of Education, Science & Technology (MEST), South Korea
USA: Prof. Chang Kee Jung, Stony Brook University, alpinist@nngroup.physics.sunysb.edu,
Phone: +1 (631) 632-8108, (631) 474-4563 (h), (631) 707-2018 (c)
Japan: Youhei Morita
Head of Public Relations Office, KEK
Tel: +81-29-879-6047

Prof. Chang Kee Jung | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>