Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The First T2K Neutrino Event Observed at Super-Kamiokande

26.02.2010
Physicists from the Japanese-led multinational T2K collaboration announced today that they had made the first detection of a neutrino which had travelled all the way under Japan from their neutrino beamline at the J-PARC facility in Tokai village (about an hour north of Tokyo by train) to the gigantic Super-Kamiokande underground detector near the west coast of Japan, 295 km (185 miles) away from Tokai. Stony Brook University has been the leading US institution in the T2K experiment.

"It is a big step forward," said T2K spokesperson Takashi Kobayashi. "We've been working hard for more than 10 years to make this happen."

They have constructed their new neutrino beamline, which will deliver the world’s most powerful neutrino beams, to study the mysterious phenomenon known as neutrino oscillations, and the observation of this event proves that their study can now begin.

"Neutrinos are the elusive ghosts of particle physics," Kobayashi explains. "They come in three types, called electron neutrinos, muon neutrinos, and tau neutrinos, which used to be thought to be immutable."

Interacting only weakly with matter, neutrinos can traverse the entire earth with vastly less attenuation than light passing through a window. The very weakness of their interactions allows physicists to make what should be very accurate predictions of their behavior, and thus it came as a shock when measurements of the flux of neutrinos coming from the thermonuclear reactions which power our sun were far lower than predicted."

A second anomaly was then demonstrated by Super-Kamiokande, when it showed that the flux of different types of neutrino generated within our atmosphere by cosmic ray interactions was different depending on whether the neutrinos were coming from above or below (which should not have been possible given our understanding of particle physics). Other experiments, such as KamLAND (also performed at Kamioka), have conclusively demonstrated that these anomalies are caused by neutrino oscillations, whereby one type of neutrino turns into another.

"Congratulations from CERN on the first T2K neutrino event seen at Super-Kamiokande," said CERN Director General Rolf Heuer. "Switching on the world's first neutrino superbeam is a great achievement, and is set to bring great advances in the understanding of this most elusive of particles. Even in a time of financial difficulty around the globe, it's important not to lose sight of the fact that basic science is and always will be a crucial element of progress. It is therefore heartening to see such an important new basic science initiative getting underway now."

"Watching this event is as mesmerizing as watching an Olympic athlete skating the perfect program on the way to a Gold Medal; it is stunningly beautiful to my eyes," said Professor Chang Kee Jung of Stony Brook University, leader of the US T2K project. "Of course this is the result of many years of hard work by more than 500 international collaborators."

The T2K experiment has been built to make measurements of unprecedented precision of known neutrino oscillations, and to look for a so-far unobserved type of oscillation which would cause a small fraction of the muon neutrinos produced at J-PARC to become electron neutrinos by the time they reach Super-Kamiokande.

"This first neutrino event marks a great achievement for T2K and a milestone for the fast-growing field of neutrino physics worldwide," said Fermilab Director Pier Oddone. "We send warmest congratulations from Fermilab, along with our best wishes for the exciting science that will follow."

Prof. Dr. Joachim Mnich, Director in charge of High Energy Physics and Astroparticle Physics at DESY also notes: "Warmest congratulations from DESY on seeing the first neutrino event and thus becoming leader in the race to understand the elusive neutrino! Through our long history of collaboration with Japanese scientists and labs we value your work most highly and hope that the T2K project will help make the neutrino less elusive."

Observing the new type of oscillation would open the prospect of comparing the oscillations of neutrinos and anti-neutrinos, which many theorists believe may be related to one of the great mysteries in fundamental physics -- why is there more matter than anti-matter in the universe? The observation of this first neutrino (see figure) means that the hunt has just begun!

Background: The T2K collaboration consists of 508 physicists from 62 institutes in 12 countries (Japan, South Korea, Canada, the United States, the United Kingdom, France, Spain, Italy, Switzerland, Germany, Poland, and Russia). The experiment consists of a new neutrino beamline using the recently constructed 30 GeV synchrotron at the J-PARC laboratory in Tokai, Japan, a set of near detectors constructed 280m from the neutrino production target, and the Super-Kamiokande detector in western Japan.

The U.S. participation in the T2K experiment is supported by the U.S.
Department of energy. It consists of 80 physicists from 11 institutions
(Boston University, Brookhaven National Laboratory, University of California, Irvine, University of Colorado, Boulder, Colorado State University,
Duke University, Louisiana State University, University of Pittsburgh,
University of Rochester, Stony Brook University, and University of Washington).
The complete list of institutions can be found at: http://neutrino.kek.jp/t2k/T2KInstitutions.pdf
The T2K experiment would like to thank the following funding agencies for their generous support:
Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan
The Department of Energy, the United States
The Natural Science and Engineering Research Council, Canada
The National Research Council, Canada
The Science and Technology Facilities Council, the United Kingdom
Institut National de Physique Nucléaire et de Physique de Particules (IN2P3), France
Commissariat à l’Énergie Atomique (CEA), France
Istituto Nazionale di Fisica Nucleare (INFN), Italy
Ministerio de Ciencia e Innovacion , Spain
Ministry of Science and Higher Education, Poland
Russian Ministry of Science and Technology, Russia
Deutsche Forschungsgemeinschaft, Germany
Ministry of Education, Science & Technology (MEST), South Korea
USA: Prof. Chang Kee Jung, Stony Brook University, alpinist@nngroup.physics.sunysb.edu,
Phone: +1 (631) 632-8108, (631) 474-4563 (h), (631) 707-2018 (c)
Japan: Youhei Morita
Head of Public Relations Office, KEK
Tel: +81-29-879-6047

Prof. Chang Kee Jung | Newswise Science News
Further information:
http://www.stonybrook.edu

More articles from Physics and Astronomy:

nachricht Gamma-ray flashes from plasma filaments
18.04.2018 | Max-Planck-Institut für Kernphysik

nachricht How does a molecule vibrate when you “touch” it?
17.04.2018 | Universität Regensburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>