Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


All systems go for next communication spacecraft

The most recent evaluations of NASA's Tracking and Data Relay Satellite (TDRS) project confirmed all systems go for a third generation upgrade of the orbiting communications network. TDRS-K is scheduled for launch aboard an Atlas V rocket from Cape Canaveral, Florida in the fall of 2012.

Approval to move forward came during a recent Agency Project Management Council (APMC) meeting at NASA Headquarters. "I am very proud of the entire TDRS civil servant and contractor team for successfully completing this milestone and demonstrating that the TDRS project is ready to proceed into the integration phase," said Jeff Gramling, TDRS Project Manager.

Three TDRS satellites, the International Space Station (ISS) and Hubble Space Telescope orbit a blue-green Earth in this artist's concept. The TDRS network facilitates around the clock communication access between ground stations and other satellites and the ISS. Credit: NASA/Goddard Space Flight Center

"I am excited to see the TDRS-K satellite enter the thermal vacuum chamber and begin environmental testing." Testing will occur within the Boeing Space Systems Facility in El Segundo, California.

APMC approval allows the project to enter Phase D that will include spacecraft integration and testing. During this phase the spacecraft reflectors will be mounted, the thermal panels and batteries will be installed before the spacecraft will have to endure the rigors of the vibration and acoustic testing. Finally, the spacecraft must pass a pre-ship review prior to being transported to Florida for launch.

... more about:
»APMC »Boeing »Goddard Space Flight Center »NASA »SIR »Space »TDRS

Prior to the APMC approval, the project successfully completed a combined Pre-Environment Review (PER) and Systems Integration Review (SIR) in August of this year. The SIR is a significant milestone in the NASA mission lifecycle. During the upcoming environmental test phase, various segments and subsystems are scrutinized for their viability under the same harsh conditions they will endure within the vacuum of space.

"Successful completion of the environmental testing phase of the project will be the last step before we ship the TDRS-K spacecraft to the launch site," said Dave Littmann, TDRS Deputy Project Manager. "Through a rigorous testing program, we will ensure this satellite, once on-orbit, is capable of meeting its functional and performance requirements, to provide reliable services to the customers of NASA's Space Network."

This next generation space communications satellite is part of a follow-on spacecraft fleet being developed and deployed to replenish NASA's Space Network. The TDRS Project Office at Goddard Space Flight Center manages the TDRS development effort. TDRS is the responsibility of the Space Communications and Navigation (SCaN) office within the Human Exploration and Operations (HEO) Mission Directorate at NASA Headquarters in Washington D.C. Operations of the network is the responsibility of the Space Network Project at Goddard.

In December 2007, NASA signed a contract for Boeing Space Systems to build two, third generation TDRS spacecraft for launch in 2012 and 2013. Within the contract were the required modifications that will enable the White Sands Complex ground system to support the new spacecraft.

The launch of TDRS-K will begin the replenishment of the fleet through the development and deployment of the next generation spacecraft. These satellites will ensure NASA's Space Network continues to provide around-the-clock, high throughput communications services to NASA's missions and serving the scientific community and human spaceflight program for years to come.

For more information about TDRS visit:

Dewayne Washington | EurekAlert!
Further information:

Further reports about: APMC Boeing Goddard Space Flight Center NASA SIR Space TDRS

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>