Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Catalyst Mimics Nature's 'Hydrogen Economy'

19.05.2009
By creating a model of the active site found in a naturally occurring enzyme, chemists at the University of Illinois have described a catalyst that acts like nature’s most pervasive hydrogen processor.

The researchers describe their work in a paper accepted for publication in the Journal of the American Chemical Society, and posted on the journal’s Web site.

Scientists have long been puzzled by nature’s ability to use cheap and plentiful building blocks – iron, nickel and sulfur – to achieve the catalytic performance seen in rare and expensive metals. In particular, two enzymes – iron-iron hydrogenase and nickel-iron hydrogenase – function as hydrogen processors, much like platinum.

“Nature relies on a very elaborate architecture to support its own ‘hydrogen economy,’ ” said Thomas B. Rauchfuss, a professor of chemistry and corresponding author of the paper. “We cracked that design by generating mock-ups of the catalytic site to include the substrate hydrogen atom.”

The researchers’ model of the nickel-iron complex is the first to include a bridging hydride ligand, an essential component of the catalyst.

“By better understanding the mechanism in the nickel-iron hydrogenase active site, we are learning how to develop new kinds of synthetic catalysts that may be useful in other applications,” said graduate student Bryan E. Barton, lead author of the paper.

“The study of hydrogenases offers plenty of potential glamour – such as the hydrogen economy, green energy and bio-fuel cells – but the lasting breakthroughs result from manipulable mechanistic models like ours,” said graduate student and co-author Matthew Whaley. “By building a model that contains a hydride ligand, we have proven that the behavior of these natural catalysts can be understood and optimized.”

University of Illinois crystallographer Danielle L. Gray also is a co-author of the paper.

The work was supported by the U.S. National Institutes of Health.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>