Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synthetic Catalyst Mimics Nature's 'Hydrogen Economy'

19.05.2009
By creating a model of the active site found in a naturally occurring enzyme, chemists at the University of Illinois have described a catalyst that acts like nature’s most pervasive hydrogen processor.

The researchers describe their work in a paper accepted for publication in the Journal of the American Chemical Society, and posted on the journal’s Web site.

Scientists have long been puzzled by nature’s ability to use cheap and plentiful building blocks – iron, nickel and sulfur – to achieve the catalytic performance seen in rare and expensive metals. In particular, two enzymes – iron-iron hydrogenase and nickel-iron hydrogenase – function as hydrogen processors, much like platinum.

“Nature relies on a very elaborate architecture to support its own ‘hydrogen economy,’ ” said Thomas B. Rauchfuss, a professor of chemistry and corresponding author of the paper. “We cracked that design by generating mock-ups of the catalytic site to include the substrate hydrogen atom.”

The researchers’ model of the nickel-iron complex is the first to include a bridging hydride ligand, an essential component of the catalyst.

“By better understanding the mechanism in the nickel-iron hydrogenase active site, we are learning how to develop new kinds of synthetic catalysts that may be useful in other applications,” said graduate student Bryan E. Barton, lead author of the paper.

“The study of hydrogenases offers plenty of potential glamour – such as the hydrogen economy, green energy and bio-fuel cells – but the lasting breakthroughs result from manipulable mechanistic models like ours,” said graduate student and co-author Matthew Whaley. “By building a model that contains a hydride ligand, we have proven that the behavior of these natural catalysts can be understood and optimized.”

University of Illinois crystallographer Danielle L. Gray also is a co-author of the paper.

The work was supported by the U.S. National Institutes of Health.

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>