Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI scientists develop solar observatory for use on suborbital manned space missions

12.12.2014

Southwest Research Institute (SwRI) is preparing to unveil a new, miniature portable solar observatory for use onboard a commercial, manned suborbital spacecraft. The SwRI Solar Instrument Pointing Platform (SSIPP) will be on exhibit at the fall meeting of the American Geophysical Union (AGU), Dec. 16-19, at the Moscone Center in San Francisco, Calif.

Using reusable suborbital commercial spacecraft for the SSIPP development effort improves on a traditional space instrument development process that goes back to the dawn of the space age, according to principal investigator Dr. Craig DeForest, a principal scientist in SwRI’s Space Science and Engineering Division.


Image Courtesy of Southwest Research Institute

The SwRI Solar Instrument Pointing Platform (SSIPP).

“Development and testing of space instrumentation has been essentially unchanged since World War II: New instruments were mated to sounding rockets, which are hand-built, miniature spacecraft that fly five-minute missions but require months, and sometimes years, between flights because the payloads typically need reconditioning after each flight.

“Commercial manned flights have the potential to completely change all that by providing a stabilized, completely reusable platform that is 30 times less expensive per flight than sounding rockets and can fly many times per week,” DeForest said. “SSIPP is a first step to exploiting that platform. We hope to enable space-based observation in the same, inexpensive mode as ground-based observatories, where a scientist might build up a new instrument for a single observation and break it down a week later.”

SSIPP uses a classic, two-stage pointing system similar to larger spacecraft, but in this case the first stage is a pilot who initially steers the instrument toward the Sun, explained Systems Engineer Jed Diller, also of SwRI. “SSIPP does the rest, locking onto the Sun to allow observations,” he said.

The first SSIPP space flight will search for “solar ultrasound,” which DeForest said is a phenomenon first observed in the early 2000s by the Transitional Region and Coronal Explorer (TRACE) spacecraft. The “ultrasound” is sound waves with 10 second period, some 18 octaves deeper than ultrasound on Earth, and forms visible ripples in the Sun’s surface layers. The waves are difficult to detect without space instrumentation, because the tiny, rapid fluctuations cannot be separated from the confounding influence of Earth’s turbulent atmosphere, he said.

The first test flights of SSIPP will be aboard a general aviation aircraft during the spring of 2015. It is scheduled to fly on XCOR’s Lynx suborbital spacecraft immediately on completion of XCOR’s flight test program in 2015.

Although at first SSIPP will be operated from inside the cockpit, a full system eventually will be mounted outside the host vehicle to enable ultraviolet (UV) and X-ray observations that are inaccessible from the ground.

SSIPP will be on display at the XCOR booth, No. 2723.

For more information, contact Joe Fohn, (210) 522-4630, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510

Joe Fohn | EurekAlert!
Further information:
http://www.swri.org/9what/releases/2014/ssipp.htm#.VIr3e2Ewfcs

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>