Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SwRI researchers discover new evidence for complex molecules on Pluto's surface

21.12.2011
The new and highly sensitive Cosmic Origins Spectrograph aboard the Hubble Space Telescope has discovered a strong ultraviolet-wavelength absorber on Pluto's surface, providing new evidence that points to the possibility of complex hydrocarbon and/or nitrile molecules lying on the surface, according to a paper recently published in the Astronomical Journal by researchers from Southwest Research Institute and Nebraska Wesleyan University.

Such chemical species can be produced by the interaction of sunlight or cosmic rays with Pluto's known surface ices, including methane, carbon monoxide and nitrogen.

The project, led by SwRI's Dr. Alan Stern, also included SwRI researchers Dr. John Spencer and Adam Shinn, and Nebraska Wesleyan University researchers Dr. Nathaniel Cunningham and student Mitch Hain.

"This is an exciting finding because complex Plutonian hydrocarbons and other molecules that could be responsible for the ultraviolet spectral features we found with Hubble may, among other things, be responsible for giving Pluto its ruddy color," said Stern.

The team also discovered evidence of changes in Pluto's ultraviolet spectrum compared to Hubble measurements from the 1990s. The changes may be related to differing terrains seen now versus in the 1990s, or to other effects, such as changes in the surface related to a steep increase in the pressure of Pluto's atmosphere during that same time span.

"The discovery we made with Hubble reminds us that even more exciting discoveries about Pluto's composition and surface evolution are likely to be in store when NASA's New Horizons spacecraft arrives at Pluto in 2015," Stern added.

This research was supported by a grant from the Space Telescope Science Institute.

Editors: A copy of the science paper by Stern et al. is available at http://iopscience.iop.org/1538-3881/143/1/22/. For more information about NASA's New Horizons mission to Pluto, go to http://pluto.jhuapl.edu/.

Images to accompany this story: www.swri.org/press/2011/pluto.htm.

For more information, contact Maria Martinez, (210) 522-3305, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org
http://www.swri.org/9what/releases/2011/pluto.htm

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>