Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switzerland has sent its first satellite into space

25.09.2009
The Indian launcher Polar Space Launch Vehicle took off at 8:22 a.m. - Swiss time. Twenty minutes later, the SwissCube was ejected from the nose cone of the rocket at an altitude of around 720 kilometers. At 9:37 a.m. the first ever signals sent from a Swiss satellite in space were picked up from Stanford (California). Mission accomplished.

Students and professors have been working very hard during the last three and a half years in order to send the concentrated cube of high technology into space. The SwissCube satellite is only 10 cubic centimeters in size and weighs a light 820 grams.

It is equipped with a telescope to fulfill its mission of observing airglow. Airglow is a luminescent phenomenon in the planetary atmosphere caused by cosmic rays striking the upper atmosphere and chemiluminescence caused mainly by oxygen and nitrogen reacting with hydroxyl ions at heights of a few hundred kilometers. The satellite should allow students and researchers to better understand the phenomenon, especially during day and night cycles.

But the real goal of the SwissCube project is more pedagogic that atmospheric. Almost 200 students working closely with experienced researchers from the EPFL and several other technical schools and departments have collaborated on the project. From the conception, through the design, and finally the fabrication of the Swiss spatial sparkler—these young engineers have had the unique opportunity of participating in a space project from the first brainstorming sessions to the data collection once in orbit. This educational model focuses on cross-platform collaboration from A-Z, and apart from ensuring an exceptional finished product, prepares students for the work world in a way that sets it apart from similar attempts at other technical universities that often buy a prefabricated CubeSat kit. Furthermore, keeping to a strict budget helps students learn how to deal with monetary constraints once in the work world.

A low-cost and innovative satellite

Ruag Space, the Loterie romande, and the Swiss government contributed to the majority of the project's financing with several Swiss enterprises contributing the rest. With the exception of a small involvement by the German company EADS-Astrium, the project was a wholly Swiss collaboration. In sum, the total cost of the project is 600,000 Swiss francs (400,000 Euro), including the launching; surprisingly little when compared to the high cost of most satellites, or even other student based projects.

The most difficult technical aspect is found in its extremely small size. Brutal variations of temperature (-50°C to over 70°C) as well as solar radiation and spatial vacuum subject the material to the toughest conditions. Vibrations caused by the launching do not allow for the smallest error in welding. For each component, engineers and students had to run a series of fastidious tests in order to ensure their durability.

The size and budget constraints have led to several innovations that may be used in future commercial satellites. For example, the engineers had to develop a more efficient system of copper contacts connecting the solar cells to the walls of the satellite to conduct electricity to the interior. By playing with the size, form, and spacing of these contacts, the team developed a new method which is both efficient and inexpensive.

The SwissCube mission should last between three months and one year. Traveling at over seven kilometers a second, the satellite will complete a full rotation of the earth every 99 minutes. Once or twice a day, the EPFL and the HES-SO in Fribourg, Switzerland, will receive radio transmission from the SwissCube—allowing for only 10 minutes to deliver complex information: telescope images, temperature measurements as well as scientific data about airglow. These data will be indispensable for preparing future Swiss satellites, for there will be, without a doubt, more than just one Swiss satellite orbiting the earth in the upcoming years.

Maurice Bourgeaud | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>