Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss camera to launch to Mars

08.03.2016

A camera designed and built at the Center of Space and Habitability (CSH) of the University of Bern will be launched with the ExoMars space orbiter next Monday 14 March and start its journey to Mars. The instrument will obtain stereo images of the surface in colour at a resolution of better than 5 m.

CaSSIS (Colour and Stereo Surface Imaging System) has been developed by a team led by the University of Bern. It is scheduled to be launched on a PROTON rocket from the Baikonur cosmodrome in Kazakhstan at 10:31 (CET) on Monday 14 March 2016. It will be carried by the European Space Agency’s ExoMars Trace Gas Orbiter (TGO). The launch will send the spacecraft towards an encounter with Mars in October 2016.


The ExoMars orbiter with CaSSIS on board is being encapsulated into the rocket at the Baikonur cosmodrome (Kazakhstan).

ESA / B. Bethge


CaSSIS before the installation on the ExoMars orbiter.

University of Bern

CaSSIS is a high resolution imaging system designed to complement the data acquired by the other payload on TGO and other Mars orbiters while also enhancing our knowledge of the surface of Mars. The camera is a cooperation between the University of Bern, the Astronomical Observatory of Padua, and the Space Research Center in Warsaw with the support of local industries and funded by the Swiss Space Office (SSO), the Italian Space Agency (ASI) and the Polish Space Agency (POLSA). The instrument will obtain stereo images of the surface in colour at a resolution of better than 5 m.

Observing dynamics on Mars

It is now known that Mars is more dynamic than previously thought. Of particular interest to the 25-strong science team from 9 countries (incl. US and Russia) is the chance CaSSIS offers to study changes that occur over the day and over the Martian seasons. Further studies of recently discovered liquid water on the surface will be one of the main aims.

«CaSSIS is the best system we could build with the available resources», says the leader of the science team, Nicolas Thomas of the Center of Space and Habitability (CSH). «It was a real challenge completing the instrument in time. But we have done a lot of tests remotely from Bern, with CaSSIS on the spacecraft in Baikonur and it really seems to be good to go. The launcher now has to do its part.»

The first signals from the ExoMars spacecraft are expected 9 hours after launch at 19:28 CET. «That is going to be a long wait», says Thomas who will be a guest of ESA at the launch in Baikonur. «I will definitely need a drop of vodka at some point», he jokes.

The first switch-on of CaSSIS is planned for mid-April when the Uni Bern team will see if their instrument performs as expected. «That will also be a nervous time», said Thomas. «But whatever happens, the Swiss engineering team did a fantastic job and showed how to build a high precision space instrument in an unbelievably short time.»

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...
https://www.youtube.com/watch?v=TGCYyhVTmCo&feature=youtu.be

Nathalie Matter | Universität Bern

Further reports about: Baikonur CET ESA ExoMars Mars Martian available resources spacecraft

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>