Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swiss camera to launch to Mars

08.03.2016

A camera designed and built at the Center of Space and Habitability (CSH) of the University of Bern will be launched with the ExoMars space orbiter next Monday 14 March and start its journey to Mars. The instrument will obtain stereo images of the surface in colour at a resolution of better than 5 m.

CaSSIS (Colour and Stereo Surface Imaging System) has been developed by a team led by the University of Bern. It is scheduled to be launched on a PROTON rocket from the Baikonur cosmodrome in Kazakhstan at 10:31 (CET) on Monday 14 March 2016. It will be carried by the European Space Agency’s ExoMars Trace Gas Orbiter (TGO). The launch will send the spacecraft towards an encounter with Mars in October 2016.


The ExoMars orbiter with CaSSIS on board is being encapsulated into the rocket at the Baikonur cosmodrome (Kazakhstan).

ESA / B. Bethge


CaSSIS before the installation on the ExoMars orbiter.

University of Bern

CaSSIS is a high resolution imaging system designed to complement the data acquired by the other payload on TGO and other Mars orbiters while also enhancing our knowledge of the surface of Mars. The camera is a cooperation between the University of Bern, the Astronomical Observatory of Padua, and the Space Research Center in Warsaw with the support of local industries and funded by the Swiss Space Office (SSO), the Italian Space Agency (ASI) and the Polish Space Agency (POLSA). The instrument will obtain stereo images of the surface in colour at a resolution of better than 5 m.

Observing dynamics on Mars

It is now known that Mars is more dynamic than previously thought. Of particular interest to the 25-strong science team from 9 countries (incl. US and Russia) is the chance CaSSIS offers to study changes that occur over the day and over the Martian seasons. Further studies of recently discovered liquid water on the surface will be one of the main aims.

«CaSSIS is the best system we could build with the available resources», says the leader of the science team, Nicolas Thomas of the Center of Space and Habitability (CSH). «It was a real challenge completing the instrument in time. But we have done a lot of tests remotely from Bern, with CaSSIS on the spacecraft in Baikonur and it really seems to be good to go. The launcher now has to do its part.»

The first signals from the ExoMars spacecraft are expected 9 hours after launch at 19:28 CET. «That is going to be a long wait», says Thomas who will be a guest of ESA at the launch in Baikonur. «I will definitely need a drop of vodka at some point», he jokes.

The first switch-on of CaSSIS is planned for mid-April when the Uni Bern team will see if their instrument performs as expected. «That will also be a nervous time», said Thomas. «But whatever happens, the Swiss engineering team did a fantastic job and showed how to build a high precision space instrument in an unbelievably short time.»

Weitere Informationen:

http://www.unibe.ch/news/media_news/media_relations_e/media_releases/2016_e/medi...
https://www.youtube.com/watch?v=TGCYyhVTmCo&feature=youtu.be

Nathalie Matter | Universität Bern

Further reports about: Baikonur CET ESA ExoMars Mars Martian available resources spacecraft

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>