Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swirling Electrons in the Whirlpool Galaxy

20.08.2014

The whirlpool galaxy M51 in a distance of approximately 30 million light years appears almost face-on and displays a beautiful system of spiral arms. A European team of astronomers observed M51 with the LOFAR Telescope in the frequency range 115-175 MHz and obtained the most sensitive galaxy image at frequencies below 1 GHz so far.

With LOFAR's high sensitivity, the disk of M51 in the radio regime could be traced much further out than before. The astronomers detected cosmic electrons and magnetic fields 40,000 light years away from the center of M51. With LOFAR~Rs high angular resolution, the spiral arms are clearly visible. Magnetic fields and cosmic rays are densest in spiral arms.

Whirlpool Galaxy M51

LOFAR radio map of the whirlpool galaxy M51 and its neighbourhood at a frequency of 150 MHz. The field covers 4 by 2.6 degrees. Inlet: Overlay onto optical image of M51. David Mulcahy et al., Astronomy & Astrophysics.

LOFAR Stations

LOFAR Stations in Europe.

ASTRON, The Netherlands

The view of galaxies in the radio regime is different to their optical appearance. Whereas optical images show predominantly the visible light from stars, the radio waves unravel two constituents of galaxies that are invisible to optical telescopes: electrons, almost as fast as light, and magnetic fields. Their role for the stability and evolution of galaxies is increasingly under discussion.

The electrons are "cosmic ray" particles produced in the shock fronts of giant supernova explosions. Magnetic fields are generated by dynamo processes driven by gas motions. When the electrons spiral around the magnetic field lines, radio waves are emitted, a process called synchrotron emission. Its intensity increases with the number and energy of the electrons and with magnetic field strength.

For many decades, radio astronomy has been unable to explore low frequencies below 300 MHz because the ionosphere acts as a barrier of low-frequency radio waves (which are completely blocked below about 10 MHz). Sophisticated methods of data processing and superfast computers are needed to recover the emission. Due to these technical challenges, spiral galaxies have hardly been studied before at these very low radio frequencies. The only observations were of poor resolution and no details could be made out.

The target of investigation in David Mulcahy’s PhD project was the beautiful spiral galaxy Messier 51 at a distance of about 30 million light years which is visible already in a small telescope in the constellation “Canes Venatici”, not far away from the famous Big Dipper (in German: “Großer Wagen”) in the sky.

“Low-frequency radio waves are important as they carry information about electrons of relatively low energies that are able to propagate further away from their places of origin in the star-forming spiral arms and are able to illuminate the magnetic fields in the outer parts of galaxies”, says David Mulcahy. “We need to know whether magnetic fields are expelled from galaxies and what their strength is out there.”

"This beautiful image, coupled with the important scientific result it represents, illustrates the fantastic advances that can be made at low radio frequencies with the LOFAR telescope”, continues Anna Scaife from Southampton University, co-author of the paper. “Unravelling the mysteries of magnetic fields is crucial to understanding how our Universe works. For too long, many of the big questions about magnetic fields have simply been untestable and this new era of radio astronomy is very exciting."

The Low Frequency Array (LOFAR), designed and constructed by ASTRON in the Netherlands, is a brand new radio telescope giving access to very low radio frequencies.

LOFAR explores the relatively unexplored frequency range below 240 MHz and consists of a multitude of small and simple antennas without moving parts. LOFAR consists of 38 stations in the Netherlands, 6 stations in Germany and one station each in the UK, France and Sweden. The novelty is the online combination of the signals from all stations in a powerful computing cluster located at the University of Groningen (Netherlands).

Observations of M51 with LOFAR below FM radio frequencies (at 30-80 MHz) have already taken place. „This opens a new window to the Universe where we do not know how galaxies will look like“, concludes Rainer Beck, who supervised David Mulcahy’s PhD project. „Maybe we will see how galaxies are magnetically connected to intergalactic space. This is a key experiment in preparation for the planned Square Kilometre Array (SKA) that should tell us how cosmic magnetic fields are generated.“

Original Paper:

The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR, by D.D. Mulcahy, A. Horneffer, R. Beck, et al.,, 2014 Astronomy & Astrophysics (DOI: 10.1051/0004-6361/201424187).
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051...

Contact:

Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-323
E-mail: rbeck@mpifr-bonn.mpg.de

Dr. David Mulcahy,
University of Southampton.
Fon: +44(0)23-8059-2446
E-mail: D.D.Mulcahy@soton.ac.uk

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de

More articles from Physics and Astronomy:

nachricht Squeezed quantum cats
27.05.2015 | ETH Zurich

nachricht Supernovas help 'clean' galaxies
27.05.2015 | Michigan State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>