Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swirling Electrons in the Whirlpool Galaxy


The whirlpool galaxy M51 in a distance of approximately 30 million light years appears almost face-on and displays a beautiful system of spiral arms. A European team of astronomers observed M51 with the LOFAR Telescope in the frequency range 115-175 MHz and obtained the most sensitive galaxy image at frequencies below 1 GHz so far.

With LOFAR's high sensitivity, the disk of M51 in the radio regime could be traced much further out than before. The astronomers detected cosmic electrons and magnetic fields 40,000 light years away from the center of M51. With LOFAR~Rs high angular resolution, the spiral arms are clearly visible. Magnetic fields and cosmic rays are densest in spiral arms.

Whirlpool Galaxy M51

LOFAR radio map of the whirlpool galaxy M51 and its neighbourhood at a frequency of 150 MHz. The field covers 4 by 2.6 degrees. Inlet: Overlay onto optical image of M51. David Mulcahy et al., Astronomy & Astrophysics.

LOFAR Stations

LOFAR Stations in Europe.

ASTRON, The Netherlands

The view of galaxies in the radio regime is different to their optical appearance. Whereas optical images show predominantly the visible light from stars, the radio waves unravel two constituents of galaxies that are invisible to optical telescopes: electrons, almost as fast as light, and magnetic fields. Their role for the stability and evolution of galaxies is increasingly under discussion.

The electrons are "cosmic ray" particles produced in the shock fronts of giant supernova explosions. Magnetic fields are generated by dynamo processes driven by gas motions. When the electrons spiral around the magnetic field lines, radio waves are emitted, a process called synchrotron emission. Its intensity increases with the number and energy of the electrons and with magnetic field strength.

For many decades, radio astronomy has been unable to explore low frequencies below 300 MHz because the ionosphere acts as a barrier of low-frequency radio waves (which are completely blocked below about 10 MHz). Sophisticated methods of data processing and superfast computers are needed to recover the emission. Due to these technical challenges, spiral galaxies have hardly been studied before at these very low radio frequencies. The only observations were of poor resolution and no details could be made out.

The target of investigation in David Mulcahy’s PhD project was the beautiful spiral galaxy Messier 51 at a distance of about 30 million light years which is visible already in a small telescope in the constellation “Canes Venatici”, not far away from the famous Big Dipper (in German: “Großer Wagen”) in the sky.

“Low-frequency radio waves are important as they carry information about electrons of relatively low energies that are able to propagate further away from their places of origin in the star-forming spiral arms and are able to illuminate the magnetic fields in the outer parts of galaxies”, says David Mulcahy. “We need to know whether magnetic fields are expelled from galaxies and what their strength is out there.”

"This beautiful image, coupled with the important scientific result it represents, illustrates the fantastic advances that can be made at low radio frequencies with the LOFAR telescope”, continues Anna Scaife from Southampton University, co-author of the paper. “Unravelling the mysteries of magnetic fields is crucial to understanding how our Universe works. For too long, many of the big questions about magnetic fields have simply been untestable and this new era of radio astronomy is very exciting."

The Low Frequency Array (LOFAR), designed and constructed by ASTRON in the Netherlands, is a brand new radio telescope giving access to very low radio frequencies.

LOFAR explores the relatively unexplored frequency range below 240 MHz and consists of a multitude of small and simple antennas without moving parts. LOFAR consists of 38 stations in the Netherlands, 6 stations in Germany and one station each in the UK, France and Sweden. The novelty is the online combination of the signals from all stations in a powerful computing cluster located at the University of Groningen (Netherlands).

Observations of M51 with LOFAR below FM radio frequencies (at 30-80 MHz) have already taken place. „This opens a new window to the Universe where we do not know how galaxies will look like“, concludes Rainer Beck, who supervised David Mulcahy’s PhD project. „Maybe we will see how galaxies are magnetically connected to intergalactic space. This is a key experiment in preparation for the planned Square Kilometre Array (SKA) that should tell us how cosmic magnetic fields are generated.“

Original Paper:

The nature of the low-frequency emission of M51: First observations of a nearby galaxy with LOFAR, by D.D. Mulcahy, A. Horneffer, R. Beck, et al.,, 2014 Astronomy & Astrophysics (DOI: 10.1051/0004-6361/201424187).


Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-323

Dr. David Mulcahy,
University of Southampton.
Fon: +44(0)23-8059-2446

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399

Norbert Junkes | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>