Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming microorganisms stir things up, and the LHC takes over

12.10.2010
Tiny creatures may play a crucial role in mixing ocean nutrients

Two separate research groups are reporting groundbreaking measurements of the fluid flow that surrounds freely swimming microorganisms.


Researchers have mapped the flow field around a swimming Volvox carteri microbe by tracking the movements of tiny tracer particles. The spherical Volvox is swimming towards the top of the image. Streamlines appear as red curves, and the color map corresponds to the fluid velocity.
Credit: K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, University of Cambridge

Experiments involving two common types of microbes reveal the ways that one creature's motion can affect its neighbors, which in turn can lead to collective motions of microorganism swarms. In addition, the research is helping to clarify how the motions of microscopic swimmers produces large scale stirring that distributes nutrients, oxygen and chemicals in lakes and oceans. A pair of papers describing the experiments will appear in the October 11 issue of the APS journal Physical Review Letters.

In order to observe the flow that microorganisms produce, researchers at the University of Cambridge tracked the motion of tiny tracer beads suspended in the fluid surrounding the tiny swimmers. They used the technique to study the fluid around two very different types of creatures: a small, blue-green form of algae called Chlamydomonas reinhardtii that swims by paddling with a pair of whip-like flagella, and the larger, spherical alga Volvox carterii that propels itself with thousands of flagella covering its surface. The tracer beads showed that the two types of organisms generate distinctly different flow patterns, both of which are much more complex than previously assumed. In a related study performed at Haverford College in Pennsylvania, researchers used a high speed camera to track the flow of tracer particles around Chlamydomonas in a thin, two-dimension film of fluid over the course of a single stroke of its flagella.

The studies should help scientists develop new models to predict the fluid motions associated with aquatic microorganisms. The models will provide clearer pictures of the ways microbes mix bodies of water, and potentially offer insights into the role plankton plays in the carbon cycle as it stirs the world's oceans. David Saintillan (University of Illinois at Urbana Champagne) gives an overview of the microorganism swimming research in a Viewpoint article in the October 11 edition of APS Physics (physics.aps.org). Advance copies of the Physical Review Letters articles and the related Physics Viewpoint are available to journalists on request.

Also in Physics: LHC takes the reins of high energy particle physics

The Large Hadron Collider (LHC) has just begun collecting data from colliding bunches of protons, and is still running at only half its design limits, but after a few months of operation it has already surpassed some of the major accomplishments of its predecessor – the Fermilab particle accelerator laboratory in Batavia Illinois. The LHC's first achievements put tighter limits on extensions of the highly successful Standard Model of physics, which describes the currently known subatomic particles. A Synopsis describing the landmark publication of the LHC's early results will appear in the October 11 edition of Physics. Advance copies of the Physical Review Letters article describing the research, and the associated Physics Synopsis, are available on request.

About Physics:

Physics (http://physics.aps.org) is a production of the American Physical Society that provides expert written commentaries and highlights of papers appearing in the Society's journals.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://physics.aps.org

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>