Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Swimming microorganisms stir things up, and the LHC takes over

Tiny creatures may play a crucial role in mixing ocean nutrients

Two separate research groups are reporting groundbreaking measurements of the fluid flow that surrounds freely swimming microorganisms.

Researchers have mapped the flow field around a swimming Volvox carteri microbe by tracking the movements of tiny tracer particles. The spherical Volvox is swimming towards the top of the image. Streamlines appear as red curves, and the color map corresponds to the fluid velocity.
Credit: K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, University of Cambridge

Experiments involving two common types of microbes reveal the ways that one creature's motion can affect its neighbors, which in turn can lead to collective motions of microorganism swarms. In addition, the research is helping to clarify how the motions of microscopic swimmers produces large scale stirring that distributes nutrients, oxygen and chemicals in lakes and oceans. A pair of papers describing the experiments will appear in the October 11 issue of the APS journal Physical Review Letters.

In order to observe the flow that microorganisms produce, researchers at the University of Cambridge tracked the motion of tiny tracer beads suspended in the fluid surrounding the tiny swimmers. They used the technique to study the fluid around two very different types of creatures: a small, blue-green form of algae called Chlamydomonas reinhardtii that swims by paddling with a pair of whip-like flagella, and the larger, spherical alga Volvox carterii that propels itself with thousands of flagella covering its surface. The tracer beads showed that the two types of organisms generate distinctly different flow patterns, both of which are much more complex than previously assumed. In a related study performed at Haverford College in Pennsylvania, researchers used a high speed camera to track the flow of tracer particles around Chlamydomonas in a thin, two-dimension film of fluid over the course of a single stroke of its flagella.

The studies should help scientists develop new models to predict the fluid motions associated with aquatic microorganisms. The models will provide clearer pictures of the ways microbes mix bodies of water, and potentially offer insights into the role plankton plays in the carbon cycle as it stirs the world's oceans. David Saintillan (University of Illinois at Urbana Champagne) gives an overview of the microorganism swimming research in a Viewpoint article in the October 11 edition of APS Physics ( Advance copies of the Physical Review Letters articles and the related Physics Viewpoint are available to journalists on request.

Also in Physics: LHC takes the reins of high energy particle physics

The Large Hadron Collider (LHC) has just begun collecting data from colliding bunches of protons, and is still running at only half its design limits, but after a few months of operation it has already surpassed some of the major accomplishments of its predecessor – the Fermilab particle accelerator laboratory in Batavia Illinois. The LHC's first achievements put tighter limits on extensions of the highly successful Standard Model of physics, which describes the currently known subatomic particles. A Synopsis describing the landmark publication of the LHC's early results will appear in the October 11 edition of Physics. Advance copies of the Physical Review Letters article describing the research, and the associated Physics Synopsis, are available on request.

About Physics:

Physics ( is a production of the American Physical Society that provides expert written commentaries and highlights of papers appearing in the Society's journals.

James Riordon | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>