Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swimming microorganisms stir things up, and the LHC takes over

12.10.2010
Tiny creatures may play a crucial role in mixing ocean nutrients

Two separate research groups are reporting groundbreaking measurements of the fluid flow that surrounds freely swimming microorganisms.


Researchers have mapped the flow field around a swimming Volvox carteri microbe by tracking the movements of tiny tracer particles. The spherical Volvox is swimming towards the top of the image. Streamlines appear as red curves, and the color map corresponds to the fluid velocity.
Credit: K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, University of Cambridge

Experiments involving two common types of microbes reveal the ways that one creature's motion can affect its neighbors, which in turn can lead to collective motions of microorganism swarms. In addition, the research is helping to clarify how the motions of microscopic swimmers produces large scale stirring that distributes nutrients, oxygen and chemicals in lakes and oceans. A pair of papers describing the experiments will appear in the October 11 issue of the APS journal Physical Review Letters.

In order to observe the flow that microorganisms produce, researchers at the University of Cambridge tracked the motion of tiny tracer beads suspended in the fluid surrounding the tiny swimmers. They used the technique to study the fluid around two very different types of creatures: a small, blue-green form of algae called Chlamydomonas reinhardtii that swims by paddling with a pair of whip-like flagella, and the larger, spherical alga Volvox carterii that propels itself with thousands of flagella covering its surface. The tracer beads showed that the two types of organisms generate distinctly different flow patterns, both of which are much more complex than previously assumed. In a related study performed at Haverford College in Pennsylvania, researchers used a high speed camera to track the flow of tracer particles around Chlamydomonas in a thin, two-dimension film of fluid over the course of a single stroke of its flagella.

The studies should help scientists develop new models to predict the fluid motions associated with aquatic microorganisms. The models will provide clearer pictures of the ways microbes mix bodies of water, and potentially offer insights into the role plankton plays in the carbon cycle as it stirs the world's oceans. David Saintillan (University of Illinois at Urbana Champagne) gives an overview of the microorganism swimming research in a Viewpoint article in the October 11 edition of APS Physics (physics.aps.org). Advance copies of the Physical Review Letters articles and the related Physics Viewpoint are available to journalists on request.

Also in Physics: LHC takes the reins of high energy particle physics

The Large Hadron Collider (LHC) has just begun collecting data from colliding bunches of protons, and is still running at only half its design limits, but after a few months of operation it has already surpassed some of the major accomplishments of its predecessor – the Fermilab particle accelerator laboratory in Batavia Illinois. The LHC's first achievements put tighter limits on extensions of the highly successful Standard Model of physics, which describes the currently known subatomic particles. A Synopsis describing the landmark publication of the LHC's early results will appear in the October 11 edition of Physics. Advance copies of the Physical Review Letters article describing the research, and the associated Physics Synopsis, are available on request.

About Physics:

Physics (http://physics.aps.org) is a production of the American Physical Society that provides expert written commentaries and highlights of papers appearing in the Society's journals.

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://physics.aps.org

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>