Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweeping X-ray Imaging Survey of Dying Stars is ‘Uncharted Territory'

11.10.2012
RIT astronomer Joel Kastner heads international team using the Chandra X-ray Observatory
The death throes of dying stars are the focus of a sweeping new survey using NASA’s Chandra X-ray satellite observatory.

More than two dozen astronomers have aligned their research goals to use Chandra to image a set of dying stars in the neighborhood of the Sun. The resulting X-ray images of these dying stars—called planetary nebulae—are shedding light on the violent “end game” of a Sun-like star’s life.

X-ray: NASA/CXC/RIT/J.Kastner et al.; Optical: NASA/STScI

Four planetary nebulae are shown here from the first systematic survey of these dying, Sun-like stars in the solar neighborhood using the Chandra X-Ray Observatory. X-ray emission from Chandra is colored purple and optical emission from the Hubble Space Telescope is colored red, green and blue. The nebulae are NGC 6543, also known as the Cat's Eye (top left), NGC 7662 (top right), NGC 7009 (bottom left) and NGC 6826 (bottom right).

The research team, led by Joel Kastner from Rochester Institute of Technology, won seven days of observing time with Chandra in 2011–12 to survey and image nearly two dozen relatively nearby planetary nebulae, resulting in the most comprehensive X-ray survey to date for such objects.

The same team recently won an eight-day time award with Chandra to continue its observing program, and will begin collecting new X-ray data later this year.

Both the previous and upcoming series of observations are part of the Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS). Leaders in planetary nebula astronomy from seven countries joined forces to win the large Chandra observing time awards.

A planetary nebula is a dying star (recently a “red giant”) that has cast off its outer layers. The newly exposed, hot core of the star (which will eventually become a “white dwarf” star) illuminates these ejected layers, while the core’s fast winds sculpt the material into a variety of shapes. The resulting dazzling objects, bearing names like Cat’s Eye, Lemon Slice and Blue Snowball, are favorite targets of optical and near-infrared telescopes.

“Planetary nebulae have provided astrophysicists with dying star ‘laboratories’ for more than a century,” Kastner says. “They provide test beds for theories of stellar evolution and give us insight into the origin of heavy elements in the universe and on Earth. Yet we still don’t fully understand why they take on such a dazzling variety of shapes.”

The widespread debate among astrophysicists concerning the planetary nebula shaping process led Kastner and postdoctoral fellow Rodolfo Montez Jr. to organize their colleagues to request a large allocation of X-ray satellite observing time to investigate the processes of stellar death and wind collisions in X-rays.

“An X-ray survey of this kind is completely uncharted territory in the planetary nebula world,” Kastner adds. “Astronomers working in this area agreed that we need large quantities of time to look at as many planetary nebulae as possible, specifically with Chandra.”

His team is using X-ray imaging to look “under the hood” of planetary nebulae. X-rays cut through the illuminated gas and dust, allowing astronomers to investigate the last tens of thousands of years of history of the dying star that threw off its outer sheaths.

“With Chandra’s exceptional ‘X-ray vision,’ we can detect the million-degree plasma inside the discarded shells and probe the energies of the stellar winds that shape them,” Kastner says.

In the initial phase of the project, the team collected data for 35 planetary nebulae—21 previously unobserved and 14 pulled from Chandra archival data—all within roughly 5,000 light years of the Sun. The recent award will bump the study to a total of 59 objects from among the roughly 120 planetary nebulae identified within this distance.

“Because they all just happen to lie relatively nearby, we think this group of objects is fairly representative of planetary nebulae in general,” Kastner says.

The findings will give theorists material to refine models describing mechanisms that shape planetary nebulae, especially the potential influence of a stellar or even a planetary companion to the dying star.

“The ChanPlaNS study provides fresh new insights into the last, dying gasps of stars like the Sun,” Kastner says. “We expect it will clarify what planetary nebulae can tell us about binary star astrophysics and stellar wind interactions.”

Early findings from the study include:

• The collision of the fast wind from the exposed core with the ejected atmosphere causes shock waves that produce the diffuse X-ray emission seen in about 30% of the full sample (and in the four provided images). The Chandra survey data shows that most planetary nebulae with diffuse X-ray emission have sharp-rimmed shells that were ejected less than 5,000 years ago; these compact inner shells are surrounded by fainter halos of material ejected tens of thousands of years earlier.

• About half of the planetary nebulas in the Chandra study show point-like X-ray sources at their central stars. Many of these point sources show high-energy X-rays that may emanate from a previously undetected companion to the central star. This supports theories asserting that double stars are responsible for the nonspherical shapes of many planetary nebulas.

These and other results from the initial phase of the project were reported in the August issue of The Astronomical Journal. Kastner and Montez are the lead authors of the paper, entitled “The Chandra X-ray Survey of Planetary Nebulae (CHANPLaNS): Probing Binarity, Magnetic Fields and Wind Collisions.” Montez, one of the first recipients of a Ph.D. from RIT’s Astrophysical Sciences and Technology, is now a postdoctoral fellow at Vanderbilt University.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>