Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suzaku finds 'fossil' fireballs from supernovae

11.01.2010
Studies of two supernova remnants using the Japan-U.S. Suzaku observatory have revealed never-before-seen embers of the high-temperature fireballs that immediately followed the explosions. Even after thousands of years, gas within these stellar wrecks retain the imprint of temperatures 10,000 times hotter than the sun's surface.

"This is the first evidence of a new type of supernova remnant -- one that was heated right after the explosion," said Hiroya Yamaguchi at the Institute of Physical and Chemical Research in Japan.

A supernova remnant usually cools quickly due to rapid expansion following the explosion. Then, as it sweeps up tenuous interstellar gas over thousands of years, the remnant gradually heats up again.

Capitalizing on the sensitivity of the Suzaku satellite, a team led by Yamaguchi and Midori Ozawa, a graduate student at Kyoto University, detected unusual features in the X-ray spectrum of IC 443, better known to amateur astronomers as the Jellyfish Nebula.

The remnant, which lies some 5,000 light-years away in the constellation Gemini, formed about 4,000 years ago. The X-ray emission forms a roughly circular patch in the northern part of the visible nebulosity.

Suzaku's X-ray Imaging Spectrometers (XISs) separate X-rays by energy in much the same way as a prism separates light into a rainbow of colors. This allows astronomers to tease out the types of processes responsible for the radiation.

Some of the X-ray emission in the Jellyfish Nebula arises as fast-moving free electrons sweep near the nuclei of atoms. Their mutual attraction deflects the electrons, which then emit X-rays as they change course. The electrons have energies corresponding to a temperature of about 12 million degrees Fahrenheit (7 million degrees Celsius).

Several bumps in the Suzaku spectrum were more puzzling. "These structures indicate the presence of a large amount of silicon and sulfur atoms from which all electrons have been stripped away," Yamaguchi said. These "naked" nuclei produce X-rays as they recapture their lost electrons.

But removing all electrons from a silicon atom requires temperatures higher than about 30 million degrees F (17 million C); hotter still for sulfur atoms. "These ions cannot form in the present-day remnant," Yamaguchi explained. "Instead, we're seeing ions created by the enormous temperatures that immediately followed the supernova."

The team suggests that the supernova occurred in a relatively dense environment, perhaps in a cocoon of the star's own making. As a massive star ages, it sheds material in the form of an outflow called a stellar wind and creates a cocoon of gas and dust. When the star explodes, the blast wave traverses the dense cocoon and heats it to temperatures as high as 100 million degrees F (55 million C), or 10,000 times hotter than the sun's surface.

Eventually, the shock wave breaks out into true interstellar space, where the gas density can be as low as a single atom per cubic centimeter -- about the volume of a sugar cube. Once in this low-density environment, the young supernova remnant rapidly expands.

The expansion cools the electrons, but it also thins the remnant's gas so much that collisions between particles become rare events. Because an atom may take thousands of years to recapture an electron, the Jellyfish Nebula's hottest ions remain even today, the astronomers reported in the Nov. 1 issue of The Astrophysical Journal.

"Suzaku sees the Jellyfish's hot heart," Ozawa said.

The team has already identified another fossil fireball in the supernova remnant known as W49B, which lies 35,000 light-years away in the constellation Aquila. In the Nov. 20 edition of The Astrophysical Journal, Ozawa, Yamaguchi and colleagues report X-ray emission from iron atoms that are almost completely stripped of electrons. Forming these ions requires temperatures in excess of 55 million degrees F (30 million C)-- nearly twice the observed temperature of the remnant's electrons.

Launched on July 10, 2005, Suzaku was developed at the Japanese Institute of Space and Astronautical Science (ISAS), which is part of the Japan Aerospace Exploration Agency (JAXA), in collaboration with NASA and other Japanese and U.S. institutions.

Francis Reddy | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>