Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surveying Earth’s interior with atomic clocks

12.11.2012
Ultraprecise portable atomic clocks are on the verge of a breakthrough. An international team lead by scientists from the University of Zurich shows that it may be possible to use the latest generation of atomic clocks to resolve structures within the Earth.

Have you ever thought to use a clock to identify mineral deposits or concealed water resources within the Earth? An international team headed by astrophysicists Philippe Jetzer and Ruxandra Bondarescu from the University of Zurich is convinced that ultraprecise portable atomic clocks will make this a reality in the next decade.


An initial high-precision atomic clock prototype, ACES (Atomic Clock Ensemble in Space), is already due to be taken to the Columbus Space Lab at the International Space Station (ISS) by 2014.

Bild: European Space Agency ESA, D. Ducros

The scientists argue that these atomic clocks have already reached the necessary degree of precision to be useful for geophysical surveying. They say that such clocks will provide the most direct measurement of the geoid – the Earth’s true physical form. It will also be possible to combine atomic clocks measurements to existent geophysical methods to explore the interior of the Earth.

Determining geoid from general relativity

Today, the Earth’s geoid – the surface of constant gravitational potential that extends the mean sea level – can only be determined indirectly. On continents, the geoid can be calculated by tracking the altitude of satellites in orbit. Picking the right surface is a complicated, multivalued problem. The spatial resolution of the geoid computed this way is low – approximately 100 km.

Using atomic clocks to determine the geoid is an idea based on general relativity that has been discussed for the past 30 years. Clocks located at different distances from a heavy body like our Earth tick at different rates. Similarly, the closer a clock is to a heavy underground structure the slower it ticks – a clock positioned over an iron ore will tick slower than one that sits above an empty cave. “In 2010 ultraprecise atomic clocks have measured the time difference between two clocks, one positioned 33 centimeters above the other,” explains Bondarescu before adding: “Local mapping of the geoid to an equivalent height of 1 centimeter with atomic clocks seems ambitions, but within the reach of atomic clock technology.”

Geophysical surveying with atomic clocks

According to Bondarescu, if an atomic clock is placed at sea level, i.e., at the exact altitude of the geoid, a second clock could be positioned anywhere on the continent as long as it is synchronized with the first clock. The connection between the clocks can be made with fiber optics cable or via telecommunication satellite provided that the transmission is reliable enough. The second clock will tick faster or slower, depending on whether it is above of beneath the geoid. The local measurement of the geoid can then be combined with other geophysical measurements such as those from gravimeters, which measure the acceleration of the gravitational field, to get a better idea of the underground structure.

Mappings possible to great depths

In principle, atomic clock surveying is possible to great depth provided that the heavy underground structure to be studied is large enough to affect the tick rates of clocks in a measurable manner. The smallest structure that atomic clocks accurate to 1 centimeter in geoid height can determine is a buried sphere with a radius of about 1.5 kilometer buried at 2 kilometers under the surface provided it has a density contrast of about 20% with the surrounding upper crust. However, scientists estimate that the same clocks would be sensitive to a buried sphere with a radius of 4 kilometers at a depth of about 30 kilometers for the same density contrast.

Currently, ultraprecise atomic clocks only work in labs. In other words, they are not transportable and thus cannot be used for measurements in the field. However, this is all set to change in the next few years: Various companies and research institutes, including the Centre Suisse d’Electronique et de Microtechnique CSEM based in Neuchâtel, are already working on the development of portable ultraprecise atomic clocks. “By 2022 at the earliest, one such ultraprecise portable atomic clock will fly into Space on board an ESA satellite,” says Professor Philippe Jetzer, the Swiss delegate for the STE-Quest satellite mission aimed at testing the general relativity theory very precisely. As early as 2014 or 2015, the “Atomic Clock Ensemble in Space ACES” is to be taken to the International Space Station ISS. ACES is an initial prototype that does not yet have the precision of STE-QUEST.

Literature:
Ruxandra Bondarescu, Mihai Bondarescu, György Hetényi, Lapo Boschi, Philippe Jetzer, Jayashree Balakrishna. Geophysical applicability of atomic clocks: direct continental geoid mapping. Geophysical Journal International. August 24, 2012. DOI: 10.1111/j.1365-246X.2012.05636.x
Contact:
Dr. Ruxandra Bondarescu (queries only in English)
Institute for Theoretical Physics
University of Zurich
Phone +41 44 635 58 04
E-mail: ruxandra@physik.uzh.ch
Prof. Philippe Jetzer
Institute for Theoretical Physics
University of Zurich
Phone +41 44 635 58 19
E-mail: jetzer@physik.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Physics and Astronomy:

nachricht NASA scientist suggests possible link between primordial black holes and dark matter
25.05.2016 | NASA/Goddard Space Flight Center

nachricht The dark side of the fluffiest galaxies
24.05.2016 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

Computational high-throughput screening finds hard magnets containing less rare earth elements

25.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>