Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supernova Shrapnel Found in Meteorite

10.09.2010
Scientists have identified the microscopic shrapnel of a nearby star that exploded just before or during the birth of the solar system 4.5 billion years ago.

Faint traces of the supernova, found in a meteorite, account for the mysterious variations in the chemical fingerprint of chromium found from one planet and meteorite to another. University of Chicago cosmochemist Nicolas Dauphas and eight co-authors report their finding in the late Sept. 10, 2010 issue of the Astrophysical Journal.

Scientists formerly believed that chromium 54 and other elements and their isotopic variations became evenly spread throughout the cloud of gas and dust that collapsed to form the solar system. “It was a very well-mixed soup,” said Bradley Meyer, a professor of astronomy and astrophysics at Clemson University who was not a co-author of the study. “But it looks like some of the ingredients got in there and didn’t get completely homogenized, and that’s a pretty interesting result.”

Scientists have known for four decades that a supernova probably occurred approximately 4.5 billion years ago, possibly triggering the birth of the sun. Their evidence: traces of aluminum 26 and iron 60, two short-lived isotopes found in meteorites but not on Earth.

These isotopes could have come from a type II supernova, caused by the core-collapse of a massive star. “It seems likely that at least one massive star contributed material to the solar system or what was going to become the solar system shortly before its birth,” Meyer said.

Researchers have already extracted many type II supernova grains from meteorites, but never from a type IA supernova. The latter type involves the explosion of a small but extremely dense white-dwarf star in a binary system, one in which two stars orbit each other. It should now be possible to determine which type of supernova contributed the chromium 54 to the Orgueil meteorite.

“The test will be to measure calcium 48,” Dauphas said. “You can make it in very large quantities in type Ia, but it’s very difficult to produce in type II.” So if the grains are highly enriched in calcium 48, they no doubt came from a type Ia supernova.

Cosmochemists have sought the carrier of chromium 54 for the last 20 years but only recently have instrumentation advances made it possible to find it. Dauphas’s own quest began in 2002, when he began the painstaking meteorite sample-preparation process for the analysis he was finally able to complete only last year.

Dauphas and his associates spent three weeks searching for chromium 54-enriched nanoparticles with an ion probe at the California Institute of Technology. “Time is very precious on those instruments and getting three weeks of instrument time is not that easy,” he said.

The researchers found a hint of an excess of the chromium-54 isotope in their first session, but as luck would have it, they had to search 1,500 microscopic grains of the Orgueil and Murchison meteorites before finding just one with definitely high levels.

The grain measured less than 100 nanometers in diameter—1,000 times smaller than the diameter of a human hair. “This is smaller than all the other kinds of presolar grains that have been documented before, except for nanodiamonds that have been found here at the University of Chicago,” Dauphas said.

The findings suggest that a supernova sprayed a mass of finely grained particles into the cloud of gas and dust that gave birth to the solar system 4.5 billion years ago. Dynamical processes in the early solar system then sorted these grains by size. These size-sorting processes led the grains to become disproportionally incorporated into the meteorites and planets newly forming around the sun.

“It’s remarkable that you can look at an isotope like chromium 54 and potentially find out a whole lot about what happened in the very first period of the solar system’s formation,” Meyer said.

Citation: “Neutron-rich chromium isotope anomalies in supernova nanoparticles,” Sept. 10, 2010, Astrophysical Journal, by Nicolas Dauphas, Laurent Remusat, James Chen, Mathieu Roskosz, Dimitri Papanastassiou, Julien Stodolna, Yunbin Guan, Chi Ma, and John Eiler.

Funding: National Aeronautics and Space Administration and National Science Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: Astrophysical Shrapnel Supernova gas and dust massive star meteorite solar system

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>