Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supernova Shrapnel Found in Meteorite

10.09.2010
Scientists have identified the microscopic shrapnel of a nearby star that exploded just before or during the birth of the solar system 4.5 billion years ago.

Faint traces of the supernova, found in a meteorite, account for the mysterious variations in the chemical fingerprint of chromium found from one planet and meteorite to another. University of Chicago cosmochemist Nicolas Dauphas and eight co-authors report their finding in the late Sept. 10, 2010 issue of the Astrophysical Journal.

Scientists formerly believed that chromium 54 and other elements and their isotopic variations became evenly spread throughout the cloud of gas and dust that collapsed to form the solar system. “It was a very well-mixed soup,” said Bradley Meyer, a professor of astronomy and astrophysics at Clemson University who was not a co-author of the study. “But it looks like some of the ingredients got in there and didn’t get completely homogenized, and that’s a pretty interesting result.”

Scientists have known for four decades that a supernova probably occurred approximately 4.5 billion years ago, possibly triggering the birth of the sun. Their evidence: traces of aluminum 26 and iron 60, two short-lived isotopes found in meteorites but not on Earth.

These isotopes could have come from a type II supernova, caused by the core-collapse of a massive star. “It seems likely that at least one massive star contributed material to the solar system or what was going to become the solar system shortly before its birth,” Meyer said.

Researchers have already extracted many type II supernova grains from meteorites, but never from a type IA supernova. The latter type involves the explosion of a small but extremely dense white-dwarf star in a binary system, one in which two stars orbit each other. It should now be possible to determine which type of supernova contributed the chromium 54 to the Orgueil meteorite.

“The test will be to measure calcium 48,” Dauphas said. “You can make it in very large quantities in type Ia, but it’s very difficult to produce in type II.” So if the grains are highly enriched in calcium 48, they no doubt came from a type Ia supernova.

Cosmochemists have sought the carrier of chromium 54 for the last 20 years but only recently have instrumentation advances made it possible to find it. Dauphas’s own quest began in 2002, when he began the painstaking meteorite sample-preparation process for the analysis he was finally able to complete only last year.

Dauphas and his associates spent three weeks searching for chromium 54-enriched nanoparticles with an ion probe at the California Institute of Technology. “Time is very precious on those instruments and getting three weeks of instrument time is not that easy,” he said.

The researchers found a hint of an excess of the chromium-54 isotope in their first session, but as luck would have it, they had to search 1,500 microscopic grains of the Orgueil and Murchison meteorites before finding just one with definitely high levels.

The grain measured less than 100 nanometers in diameter—1,000 times smaller than the diameter of a human hair. “This is smaller than all the other kinds of presolar grains that have been documented before, except for nanodiamonds that have been found here at the University of Chicago,” Dauphas said.

The findings suggest that a supernova sprayed a mass of finely grained particles into the cloud of gas and dust that gave birth to the solar system 4.5 billion years ago. Dynamical processes in the early solar system then sorted these grains by size. These size-sorting processes led the grains to become disproportionally incorporated into the meteorites and planets newly forming around the sun.

“It’s remarkable that you can look at an isotope like chromium 54 and potentially find out a whole lot about what happened in the very first period of the solar system’s formation,” Meyer said.

Citation: “Neutron-rich chromium isotope anomalies in supernova nanoparticles,” Sept. 10, 2010, Astrophysical Journal, by Nicolas Dauphas, Laurent Remusat, James Chen, Mathieu Roskosz, Dimitri Papanastassiou, Julien Stodolna, Yunbin Guan, Chi Ma, and John Eiler.

Funding: National Aeronautics and Space Administration and National Science Foundation.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

Further reports about: Astrophysical Shrapnel Supernova gas and dust massive star meteorite solar system

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>