Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How supermassive black holes were formed

26.08.2010
The first supermassive black holes were formed shortly after the "Big Bang". That is the conclusion reached by an international research group led by Prof. Lucio Mayer from the University of Zurich. As the researchers write in "Nature", the supermassive black holes were formed through the collision of galaxies 13 billion years ago. The new findings are important in order to understand the origin of gravitation and cosmological structures.

Lucio Mayer, Professor for Theoretical Physics at the University of Zurich, and his team are convinced that they have discovered the origin of the first supermassive black holes, which came into being about 13 billion years ago, at the very beginning of the universe. In their article which has appeared in "Nature" magazine, Lucio Mayer and his colleagues describe their computer simulations with which they modelled the formation of galaxies and black holes during the first billion years after the "Big Bang".

According to the current status of knowledge, the universe is approximately 14 billion years old. Recently, research groups discovered that galaxies formed much earlier than assumed until then - namely within the first billion years. The computer simulations from Mayer's team now show that the very first supermassive black holes came into existence when those early galaxies collided with each other and merged.

Galaxies and massive black holes formed very quickly
For more than two decades, science has assumed that galaxies grow hierarchically, i.e. that initially, small masses are pulled together by gravitation, and from them, larger structures form step by step. The researchers at the University of Zurich have now turned that assumption upside down. Mayer says: "Our result shows that large structures such as galaxies and massive black holes formed quickly in the history of the universe. At first glance, this seems to contradict the standard theory with cold dark material which describes the hierarchical building of galaxies." The apparent paradox is explicable according to Lucio Mayer: "Normal matter from which the visible parts of the galaxies and supermassive black holes are formed collapse more strongly than dark material forming quickly the most massive galaxies in the densest regions of the Universe, where gravity begins to form structures earlier than elsewhere. This enables the apparent non-hierarchical formation of galaxies and black holes."

Huge galaxies and supermassive black holes form quickly. Small galaxies - on the other hand, such as our own, the Milky Way and its comparatively small black hole in the centre weighting only 1 million solar masses instead of the 1 billion solar masses of the black holes simulated by Mayer and colleagues - have formed more slowly. As Lucio Mayer explained, the galaxies in their simulation would count among the biggest known today in reality - they were around a hundred times larger than the Milky Way. A galaxy that probably arose from a collision in that way is our neighbouring galaxy M87 in the Virgo cluster, located at 54 million light years from us.

The scientists began their simulation with two large, primary galaxies comprised of stars and characteristic for the beginning of the universe. They then simulated the collision and the merging of galaxies. Thanks to the super-computer "Zbox3" at the University of Zurich and the "Brutus Cluster" from the ETHZ, the researchers were able to observe, at a resolution higher than ever before, what happened next: Initially, dust and condensed gases collected in the centre of the new galaxy and formed a dense disk there. The disk became unstable, so that the gases and the dust contracted again and formed an even more dense region. From that, a supermassive black hole eventually came into existence without forming a star first.

The new findings have consequences for cosmology: The assumption that the characteristics of galaxies and the mass of the black hole are related to each other because they grow in parallel will have to be revised. In Mayer's model, the black hole grows much more quickly than the galaxy. It is therefore possible that the black hole is not regulated by the growth of the galaxy. It is far more possible that the galaxy is regulated by the growth of the black hole. Mayer and his colleagues believe that their research will also be useful for physicists who search for gravitational waves and thus want to supply direct proof of Einstein's theory of relativity. According to Einstein, who received his doctorate in 1906 at the University of Zurich, the merging of supermassive black holes must have caused massive gravitational waves - waves in a space-time continuum whose remains should still be measurable today. The LISA and LISA Pathfinder projects at the ESA and NASA, in which physicists from the University of Zurich are also participants, want to find gravitational waves of that kind. In order to be able to interpret future measurement results correctly, it is important to understand the formation of supermassive black holes in the early time of the universe.

Literature:
L. Mayer, S. Kazantzidis, A. Escala, S. Callegari, Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers, Nature (vol 466, issue 7310), doi:10.1038/nature 09294
Contact:
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 635 61 97
E-Mail: lmayer@physik.uzh.ch
Participants:
Apart from Lucio Mayer and Simone Callegari from the Theoretical Physics department at the University Zurich, further participants in the publication are Stelios Kazantzidis, who received his doctorate at the University of Zurich and is today at the Ohio State University, and Andres Escala, formerly at Stanford University and today at the Universidad de Chile. The research work was financed by the Swiss National Fund SNF, the Center for Cosmology and Astro-Particle Physics at Ohio State and the Kavli Institute for Particle Astrophysics at Stanford University.

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>