Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How supermassive black holes were formed

26.08.2010
The first supermassive black holes were formed shortly after the "Big Bang". That is the conclusion reached by an international research group led by Prof. Lucio Mayer from the University of Zurich. As the researchers write in "Nature", the supermassive black holes were formed through the collision of galaxies 13 billion years ago. The new findings are important in order to understand the origin of gravitation and cosmological structures.

Lucio Mayer, Professor for Theoretical Physics at the University of Zurich, and his team are convinced that they have discovered the origin of the first supermassive black holes, which came into being about 13 billion years ago, at the very beginning of the universe. In their article which has appeared in "Nature" magazine, Lucio Mayer and his colleagues describe their computer simulations with which they modelled the formation of galaxies and black holes during the first billion years after the "Big Bang".

According to the current status of knowledge, the universe is approximately 14 billion years old. Recently, research groups discovered that galaxies formed much earlier than assumed until then - namely within the first billion years. The computer simulations from Mayer's team now show that the very first supermassive black holes came into existence when those early galaxies collided with each other and merged.

Galaxies and massive black holes formed very quickly
For more than two decades, science has assumed that galaxies grow hierarchically, i.e. that initially, small masses are pulled together by gravitation, and from them, larger structures form step by step. The researchers at the University of Zurich have now turned that assumption upside down. Mayer says: "Our result shows that large structures such as galaxies and massive black holes formed quickly in the history of the universe. At first glance, this seems to contradict the standard theory with cold dark material which describes the hierarchical building of galaxies." The apparent paradox is explicable according to Lucio Mayer: "Normal matter from which the visible parts of the galaxies and supermassive black holes are formed collapse more strongly than dark material forming quickly the most massive galaxies in the densest regions of the Universe, where gravity begins to form structures earlier than elsewhere. This enables the apparent non-hierarchical formation of galaxies and black holes."

Huge galaxies and supermassive black holes form quickly. Small galaxies - on the other hand, such as our own, the Milky Way and its comparatively small black hole in the centre weighting only 1 million solar masses instead of the 1 billion solar masses of the black holes simulated by Mayer and colleagues - have formed more slowly. As Lucio Mayer explained, the galaxies in their simulation would count among the biggest known today in reality - they were around a hundred times larger than the Milky Way. A galaxy that probably arose from a collision in that way is our neighbouring galaxy M87 in the Virgo cluster, located at 54 million light years from us.

The scientists began their simulation with two large, primary galaxies comprised of stars and characteristic for the beginning of the universe. They then simulated the collision and the merging of galaxies. Thanks to the super-computer "Zbox3" at the University of Zurich and the "Brutus Cluster" from the ETHZ, the researchers were able to observe, at a resolution higher than ever before, what happened next: Initially, dust and condensed gases collected in the centre of the new galaxy and formed a dense disk there. The disk became unstable, so that the gases and the dust contracted again and formed an even more dense region. From that, a supermassive black hole eventually came into existence without forming a star first.

The new findings have consequences for cosmology: The assumption that the characteristics of galaxies and the mass of the black hole are related to each other because they grow in parallel will have to be revised. In Mayer's model, the black hole grows much more quickly than the galaxy. It is therefore possible that the black hole is not regulated by the growth of the galaxy. It is far more possible that the galaxy is regulated by the growth of the black hole. Mayer and his colleagues believe that their research will also be useful for physicists who search for gravitational waves and thus want to supply direct proof of Einstein's theory of relativity. According to Einstein, who received his doctorate in 1906 at the University of Zurich, the merging of supermassive black holes must have caused massive gravitational waves - waves in a space-time continuum whose remains should still be measurable today. The LISA and LISA Pathfinder projects at the ESA and NASA, in which physicists from the University of Zurich are also participants, want to find gravitational waves of that kind. In order to be able to interpret future measurement results correctly, it is important to understand the formation of supermassive black holes in the early time of the universe.

Literature:
L. Mayer, S. Kazantzidis, A. Escala, S. Callegari, Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers, Nature (vol 466, issue 7310), doi:10.1038/nature 09294
Contact:
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 635 61 97
E-Mail: lmayer@physik.uzh.ch
Participants:
Apart from Lucio Mayer and Simone Callegari from the Theoretical Physics department at the University Zurich, further participants in the publication are Stelios Kazantzidis, who received his doctorate at the University of Zurich and is today at the Ohio State University, and Andres Escala, formerly at Stanford University and today at the Universidad de Chile. The research work was financed by the Swiss National Fund SNF, the Center for Cosmology and Astro-Particle Physics at Ohio State and the Kavli Institute for Particle Astrophysics at Stanford University.

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>