Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How supermassive black holes were formed

26.08.2010
The first supermassive black holes were formed shortly after the "Big Bang". That is the conclusion reached by an international research group led by Prof. Lucio Mayer from the University of Zurich. As the researchers write in "Nature", the supermassive black holes were formed through the collision of galaxies 13 billion years ago. The new findings are important in order to understand the origin of gravitation and cosmological structures.

Lucio Mayer, Professor for Theoretical Physics at the University of Zurich, and his team are convinced that they have discovered the origin of the first supermassive black holes, which came into being about 13 billion years ago, at the very beginning of the universe. In their article which has appeared in "Nature" magazine, Lucio Mayer and his colleagues describe their computer simulations with which they modelled the formation of galaxies and black holes during the first billion years after the "Big Bang".

According to the current status of knowledge, the universe is approximately 14 billion years old. Recently, research groups discovered that galaxies formed much earlier than assumed until then - namely within the first billion years. The computer simulations from Mayer's team now show that the very first supermassive black holes came into existence when those early galaxies collided with each other and merged.

Galaxies and massive black holes formed very quickly
For more than two decades, science has assumed that galaxies grow hierarchically, i.e. that initially, small masses are pulled together by gravitation, and from them, larger structures form step by step. The researchers at the University of Zurich have now turned that assumption upside down. Mayer says: "Our result shows that large structures such as galaxies and massive black holes formed quickly in the history of the universe. At first glance, this seems to contradict the standard theory with cold dark material which describes the hierarchical building of galaxies." The apparent paradox is explicable according to Lucio Mayer: "Normal matter from which the visible parts of the galaxies and supermassive black holes are formed collapse more strongly than dark material forming quickly the most massive galaxies in the densest regions of the Universe, where gravity begins to form structures earlier than elsewhere. This enables the apparent non-hierarchical formation of galaxies and black holes."

Huge galaxies and supermassive black holes form quickly. Small galaxies - on the other hand, such as our own, the Milky Way and its comparatively small black hole in the centre weighting only 1 million solar masses instead of the 1 billion solar masses of the black holes simulated by Mayer and colleagues - have formed more slowly. As Lucio Mayer explained, the galaxies in their simulation would count among the biggest known today in reality - they were around a hundred times larger than the Milky Way. A galaxy that probably arose from a collision in that way is our neighbouring galaxy M87 in the Virgo cluster, located at 54 million light years from us.

The scientists began their simulation with two large, primary galaxies comprised of stars and characteristic for the beginning of the universe. They then simulated the collision and the merging of galaxies. Thanks to the super-computer "Zbox3" at the University of Zurich and the "Brutus Cluster" from the ETHZ, the researchers were able to observe, at a resolution higher than ever before, what happened next: Initially, dust and condensed gases collected in the centre of the new galaxy and formed a dense disk there. The disk became unstable, so that the gases and the dust contracted again and formed an even more dense region. From that, a supermassive black hole eventually came into existence without forming a star first.

The new findings have consequences for cosmology: The assumption that the characteristics of galaxies and the mass of the black hole are related to each other because they grow in parallel will have to be revised. In Mayer's model, the black hole grows much more quickly than the galaxy. It is therefore possible that the black hole is not regulated by the growth of the galaxy. It is far more possible that the galaxy is regulated by the growth of the black hole. Mayer and his colleagues believe that their research will also be useful for physicists who search for gravitational waves and thus want to supply direct proof of Einstein's theory of relativity. According to Einstein, who received his doctorate in 1906 at the University of Zurich, the merging of supermassive black holes must have caused massive gravitational waves - waves in a space-time continuum whose remains should still be measurable today. The LISA and LISA Pathfinder projects at the ESA and NASA, in which physicists from the University of Zurich are also participants, want to find gravitational waves of that kind. In order to be able to interpret future measurement results correctly, it is important to understand the formation of supermassive black holes in the early time of the universe.

Literature:
L. Mayer, S. Kazantzidis, A. Escala, S. Callegari, Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers, Nature (vol 466, issue 7310), doi:10.1038/nature 09294
Contact:
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 635 61 97
E-Mail: lmayer@physik.uzh.ch
Participants:
Apart from Lucio Mayer and Simone Callegari from the Theoretical Physics department at the University Zurich, further participants in the publication are Stelios Kazantzidis, who received his doctorate at the University of Zurich and is today at the Ohio State University, and Andres Escala, formerly at Stanford University and today at the Universidad de Chile. The research work was financed by the Swiss National Fund SNF, the Center for Cosmology and Astro-Particle Physics at Ohio State and the Kavli Institute for Particle Astrophysics at Stanford University.

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>