Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like Superman's X-Ray Vision, New Microscope Reveals Nanoscale Details

09.08.2011
Physicists at UC San Diego have developed a new kind of X-ray microscope that can penetrate deep within materials like Superman’s fabled X-ray vision and see minute details at the scale of a single nanometer, or one billionth of a meter.

But that’s not all. What’s unusual about this new, nanoscale, X-ray microscope is that the images are not produced by a lens, but by means of a powerful computer program.

The scientists report in a paper published in this week’s early online edition of the Proceedings of the National Academy of Sciences that this computer program, or algorithm, is able to convert the diffraction patterns produced by the X-rays bouncing off the nanoscale structures into resolvable images.

“The mathematics behind this is somewhat complicated,” said Oleg Shpyrko, an assistant professor of physics at UC San Diego who headed the research team. “But what we did is to show that for the first time that we can image magnetic domains with nanometer precision. In other words, we can see magnetic structure at the nanoscale level without using any lenses.”

One immediate application of this lens-less X-ray microscope is the development of smaller, data storage devices for computers that can hold more memory.

“This will aid research in hard disk drives where the magnetic bits of data on the surface of the disk are currently only 15 nanometers in size,” said Eric Fullerton, a co-author of the paper and director of UC San Diego’s Center for Magnetic Recording Research. “This new ability to directly image the bits will be invaluable as we push to store even more data in the future.”

The development should be also immediately applicable to other areas of nanoscience and nanotechnology.

“To advance nanoscience and nanotechnology, we have to be able to understand how materials behave at the nanoscale,” said Shpyrko. “We want to be able to make materials in a controlled fashion to build magnetic devices for data storage or, in biology or chemistry, to be able to manipulate matter at nanoscale. And in order to do that we have to be able to see at nanoscale. This technique allows you to do that. It allows you to look into materials with X-rays and see details at the nanoscale.”

“Because there is no lens in the way, putting a bulky magnet around the sample or adding equipment to change the sample environment in some other way during the measurement is much easier with this method than if we had to use a lens,” Shpyrko added.

Ashish Tripathi, a graduate student in Shpyrko’s lab, developed the algorithm that served as the X-ray microscope’s lens. It worked, in principle, somewhat like the computer program that sharpened the Hubble Space Telescope’s initially blurred images, which was caused by a spherical aberration in the telescope’s mirror before the telescope was repaired in space. A similar concept is employed by astronomers working in ground-based telescopes who use adaptive optics, movable mirrors controlled by computers, to take out the distortions in their images from the twinkling star light moving through the atmosphere.

But the technique Tripathi developed was entirely new. “There was a lot of simulation involved in the development; it was a lot of work,” said Shpyrko.

To test their microscope’s ability to penetrate and resolve details at the nanoscale, the physicists made a layered film composed of the elements gadolinium and iron. Such films are now being studied in the information technology industry to develop higher capacity, smaller, and faster computer memory and disk drives.

“Both are magnetic materials and if you combine them in a structure it turns out they spontaneously form nanoscale magnetic domains,” Shpyrko. “They actually self assemble into magnetic stripes.”

Under the X-ray microscope, the layered gadolinium and iron film looks something like baklava dessert that crinkles up magnetically to form a series of magnetic domains, which appear like the repeating swirls of the ridges in fingerprints. Being able to resolve those domains at the nanoscale for the first time is critically important for computer engineers seeking to cram more data into smaller and smaller hard drives.

As materials are made with smaller and smaller magnetic domains, or thinner and thinner fingerprint patterns, more data can be stored in a smaller space within a material. “The way we’re able to do that is to shrink the size of the magnetic bits,” Shpyrko said.

The technique should find many other uses outside computer engineering as well.

“By tuning the X-ray energy, we can also use the technique to look at different elements within materials, which is very important in chemistry,” he added. “In biology, it can be used to image viruses, cells and different kinds of tissues with a spatial resolution that is better than resolution available using visible light.”

The scientists used the Advanced Photon Source, the most brilliant source of coherent X-rays in the Western Hemisphere, at the University of Chicago’s Argonne National Laboratory near Chicago to conduct their research project, which was funded by the U.S. Department of Energy. In addition to Tripathi, Shpyrko and Fullerton, a professor of electrical and computer engineering at UC San Diego, other co-authors of the paper include UC San Diego physics graduate students Jyoti Mohanty, Sebastian Dietze and Erik Shipton as well as physicists Ian McNulty and SangSoo Kim at Argonne National Laboratory.

Media Contact: Kim McDonald (858) 534-7572, kmcdonald@ucsd.edu
Comment: Oleg Shpyrko (858) 534-3066, oshpyrko@ucsd.edu

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>