Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity-Related Materials Retain Shape but Change Properties Under Strain

02.09.2011
Finding opens path for new materials and devices

A University of Arkansas physicist and his colleagues have found that ultra-thin films of superconductors and related materials don’t lose their fundamental properties when built under strain when built as atomically thin layers, an important step towards achieving artificially designed room temperature superconductivity. This ability will allow researchers to create new types of materials and properties and enable exotic electronic phases in ultra-thin films.

Jak Chakhalian, University of Arkansas professor of physics, and his colleagues reported their findings in Physical Review Letters.

Room temperature superconductivity would change the world’s economy, Chakhalian contends. To start, superconductors can carry electricity without losing energy to heat during transmission the way all of today’s materials do. Today’s power grid loses almost 15 percent of its energy to heat. That may not seem like a high number, but it translates into a multi-billion dollar loss.

Scientists have looked at many solutions to increase energy efficiency, but Chakhalian seeks radical energy solutions, like a material that acts as a room-temperature superconductor.

“With a superconductor, you could redistribute energy around the globe with zero loss,” he said.

Room-temperature superconductivity remains a dream, but the findings of Chakhalian’s team may bring it closer to reality. Scientists have known for years that putting together two simple metals, semiconducting or ferroelectric materials of different sizes causes a strain that makes those materials stretch or compress to adjust the positions of atoms to match each other, often introducing defects and making them lose their ability to conduct electricity. This basic principle has been routinely applied to microelectronics devices used in everything from cell phones to computers to solar cells.

Until recently, many researchers believed the same principle applied to high temperature superconducting and other exotic electronic materials at the nanoscale. They believed that combining these materials under strain also would modify their metallic and superconducting properties and may turn into insulators.

Chakhalian and his colleagues, however, showed that in most cases, these previous beliefs were wrong.

“To our surprise, we found that with ultra-thin films of high-temperature superconductors and similar correlated electron oxides, you can perfectly match nanofilms to substrates without noticeable compressing or stretching the materials,” Chakhalian said. He and his colleagues conducted experiments at the synchrotron at Argonne National Laboratory on ultra-thin films of just a few atomic layers thick. With a technique Chakhalian perfected in past work published in Science magazine in 2007, scientists can “see” the stretching and compressing that takes place in most materials. However, with the novel electronic materials, the result markedly differed from past experience – the atoms “fit” perfectly and the nano-layers retained their shape.

“You can’t assume that nature behaves identically with different materials,” Chakhalian said.

Additionally, theorist James Rondinelli at Drexel University, conducted complex super-computer based calculations to determine why the material retains its atomic shape and unique properties. They found that, instead of stretching or compressing, the chemical bonds prefer to rotate to accommodate the strain.

“This opens the door to another whole class of materials and novel magnetic and superconducting phases,” Chakhalian said. Moreover, they discovered that the atomic level strain accommodation creates dramatically different properties depending on the direction of strain, in other words, whether the film is stretched or compressed.

“This gives us another degree of freedom,” Chakhalian said. “This is completely not symmetric, contrary to what everyone has anticipated for decades. And in nanofilms it may end up with absolutely different physics from the bulk crystals.”

This happens because the electrons in high-temperature superconducting and similar materials are keenly aware of one another. This awareness causes them to repel one another to the extreme, so compressing and stretching is not energetically easiest way. Instead, rotation of structural units works best.

“Nature is lazy. It does not want to expend energy,” Chakhalian said. “Now we can use these new-found properties as the foundation of the next generation of ultra-thin film technology with yet unknown functionalities.”

Chakhalian is the Charles and Clydene Scharlau Professor of Physics in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>