Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity-Related Materials Retain Shape but Change Properties Under Strain

02.09.2011
Finding opens path for new materials and devices

A University of Arkansas physicist and his colleagues have found that ultra-thin films of superconductors and related materials don’t lose their fundamental properties when built under strain when built as atomically thin layers, an important step towards achieving artificially designed room temperature superconductivity. This ability will allow researchers to create new types of materials and properties and enable exotic electronic phases in ultra-thin films.

Jak Chakhalian, University of Arkansas professor of physics, and his colleagues reported their findings in Physical Review Letters.

Room temperature superconductivity would change the world’s economy, Chakhalian contends. To start, superconductors can carry electricity without losing energy to heat during transmission the way all of today’s materials do. Today’s power grid loses almost 15 percent of its energy to heat. That may not seem like a high number, but it translates into a multi-billion dollar loss.

Scientists have looked at many solutions to increase energy efficiency, but Chakhalian seeks radical energy solutions, like a material that acts as a room-temperature superconductor.

“With a superconductor, you could redistribute energy around the globe with zero loss,” he said.

Room-temperature superconductivity remains a dream, but the findings of Chakhalian’s team may bring it closer to reality. Scientists have known for years that putting together two simple metals, semiconducting or ferroelectric materials of different sizes causes a strain that makes those materials stretch or compress to adjust the positions of atoms to match each other, often introducing defects and making them lose their ability to conduct electricity. This basic principle has been routinely applied to microelectronics devices used in everything from cell phones to computers to solar cells.

Until recently, many researchers believed the same principle applied to high temperature superconducting and other exotic electronic materials at the nanoscale. They believed that combining these materials under strain also would modify their metallic and superconducting properties and may turn into insulators.

Chakhalian and his colleagues, however, showed that in most cases, these previous beliefs were wrong.

“To our surprise, we found that with ultra-thin films of high-temperature superconductors and similar correlated electron oxides, you can perfectly match nanofilms to substrates without noticeable compressing or stretching the materials,” Chakhalian said. He and his colleagues conducted experiments at the synchrotron at Argonne National Laboratory on ultra-thin films of just a few atomic layers thick. With a technique Chakhalian perfected in past work published in Science magazine in 2007, scientists can “see” the stretching and compressing that takes place in most materials. However, with the novel electronic materials, the result markedly differed from past experience – the atoms “fit” perfectly and the nano-layers retained their shape.

“You can’t assume that nature behaves identically with different materials,” Chakhalian said.

Additionally, theorist James Rondinelli at Drexel University, conducted complex super-computer based calculations to determine why the material retains its atomic shape and unique properties. They found that, instead of stretching or compressing, the chemical bonds prefer to rotate to accommodate the strain.

“This opens the door to another whole class of materials and novel magnetic and superconducting phases,” Chakhalian said. Moreover, they discovered that the atomic level strain accommodation creates dramatically different properties depending on the direction of strain, in other words, whether the film is stretched or compressed.

“This gives us another degree of freedom,” Chakhalian said. “This is completely not symmetric, contrary to what everyone has anticipated for decades. And in nanofilms it may end up with absolutely different physics from the bulk crystals.”

This happens because the electrons in high-temperature superconducting and similar materials are keenly aware of one another. This awareness causes them to repel one another to the extreme, so compressing and stretching is not energetically easiest way. Instead, rotation of structural units works best.

“Nature is lazy. It does not want to expend energy,” Chakhalian said. “Now we can use these new-found properties as the foundation of the next generation of ultra-thin film technology with yet unknown functionalities.”

Chakhalian is the Charles and Clydene Scharlau Professor of Physics in the J. William Fulbright College of Arts and Sciences.

CONTACTS:
Jak Chakhalian, professor, physics
J. William Fulbright College of Arts and Sciences
479-575-4313, jchakal@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>