Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Superconductivity to meet humanity's greatest challenges

The stage is now set for superconductivity to branch out and meet some of the biggest challenges facing humanity today.

This is according to a topical review `Superconductivity and the environment: a Roadmap', published today, 16 September, in IOP Publishing's journal Superconductor Science and Technology, which explains how superconducting technologies can move out of laboratories and hospitals and address wider issues such as water purification, earthquake monitoring and the reduction of greenhouse gases.

Lance Cooley, a guest editor of the article who is based at the Fermi National Accelerator Laboratory, said: "Superconductivity has been meeting some great challenges over the past 50 years. The Large Hadron Collider, mankind's largest machine, would not exist were it not for superconductivity."

"There are many uses of superconductors in other big science projects, laboratory devices, and MRI systems. Now, as the roadmap outlines, new materials and technologies enable researchers and entrepreneurs to be more versatile and apply superconductivity in other ways that contribute to our everyday lives, such as innovations to benefit our environment."

By utilising superconducting quantum interference devices (SQUIDs) – very sensitive contraptions that can measure extremely small changes in magnetic fields – one section explains how unexploded weapons, otherwise known as unexploded ordnances (UXOs), can be detected and safely recovered.

Thousands of UXOs are still discovered each year around Europe, especially in areas that were heavily bombed during the Second World War. They can be very unstable and still pose a major threat; however, the sheer scale and complexity of the terrain that needs to be surveyed makes detecting them very complicated.

A section by Pascal Febvre, from the University of Savoie, explains how a complete network of SQUIDs dotted around the globe could also aid the detection of solar bursts which send magnetic particles hurtling towards Earth, potentially wreaking havoc with our communication systems.

A similar network of SQUIDs could also help detect the specific magnetic signature of Earthquakes before they strike.

One area already progressing with the help of superconducting technology is high-speed rail travel. Magnetically levitating (Maglev) trains, whereby the carriage is levitated by magnets and has no contact with the track, have already been deployed in Germany, China, Japan and Brazil.

These countries are now looking to develop high temperature superconducting maglev trains which use liquid nitrogen instead of liquid helium to cool the tracks. This is expected to simplify the cooling process, reduce operational costs, offer more stable levitation and allow lighter carriages to be used, according to Motoaki Terai from the Central Japan Railway Company.

Kyeongdal Choi and Woo Seok Kim, from Korea Polytechnic University, explain how high temperature superconducting technologies can be used to effectively store power from wind and solar plants, as the weather dictates how much power can be generated at any one time, unlike non-renewable sources such as coal and oil which have a constant output.

Superconducting cables could also carry an electrical current with no resistance across large distances from the wind and solar power plants to cities and towns. According to Steven Eckroad, from the Electric Power Research Institute, and Adela Marian, from the Institute for Advanced Sustainability Studies, advances in cryogenics, the development of low-cost wires and ac-to-dc current converters will make this technology cost-effective and environmentally friendly.

Professor Shigehiro Nishijima of Osaka University points out the increasing need for clean water for domestic purposes and describes the possibility of using high field magnetic separation systems based on superconducting magnets for this purpose.

For more information about the environmental applications of superconductivity, including high-end computing and motors for ship propulsion, the paper can be downloaded from

Superconductivity Fast Facts:

Superconductivity was first discovered by Dutch physicist Heike Kamerlingh Onnes on 9 April, 1911 in Leiden.

A superconducting material – usually metals or ceramic materials – is one which has zero resistance to an electrical current, usually induced when the material is cooled to temperatures near absolute zero.

An electric current flowing around a loop of superconducting material will experience no resistance and keep going indefinitely, even without a power source.

As superconducting wires can conduct much larger currents than ordinary wire, they create much more intense magnetic fields around them.

These 'superconducting magnets' are used in MRI machines as well as scientific equipment such as mass spectrometers and particle accelerators.

Notes to Editors


1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop: Tel: 0117 930 1032 E-mail:

For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week.

Login details also give free access to IOPscience, IOP Publishing's journal platform.

To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer,, with your name, organisation, address and a preferred username.

Superconductivity and the environment: a roadmap

3. The published version of the paper 'Superconductivity and the environment: a roadmap' (Shigehiro Nishijima et al 2013 Supercond. Sci. Technol. 26 113001) will be freely available online from Monday 16 September. It will be available at
Superconductor Science and Technology

4. Superconductor Science and Technology is an international multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.
IOP Publishing

5. IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to

The Institute of Physics

6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to

Michael Bishop | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>