Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconductivity to meet humanity's greatest challenges

16.09.2013
The stage is now set for superconductivity to branch out and meet some of the biggest challenges facing humanity today.

This is according to a topical review `Superconductivity and the environment: a Roadmap', published today, 16 September, in IOP Publishing's journal Superconductor Science and Technology, which explains how superconducting technologies can move out of laboratories and hospitals and address wider issues such as water purification, earthquake monitoring and the reduction of greenhouse gases.

Lance Cooley, a guest editor of the article who is based at the Fermi National Accelerator Laboratory, said: "Superconductivity has been meeting some great challenges over the past 50 years. The Large Hadron Collider, mankind's largest machine, would not exist were it not for superconductivity."

"There are many uses of superconductors in other big science projects, laboratory devices, and MRI systems. Now, as the roadmap outlines, new materials and technologies enable researchers and entrepreneurs to be more versatile and apply superconductivity in other ways that contribute to our everyday lives, such as innovations to benefit our environment."

By utilising superconducting quantum interference devices (SQUIDs) – very sensitive contraptions that can measure extremely small changes in magnetic fields – one section explains how unexploded weapons, otherwise known as unexploded ordnances (UXOs), can be detected and safely recovered.

Thousands of UXOs are still discovered each year around Europe, especially in areas that were heavily bombed during the Second World War. They can be very unstable and still pose a major threat; however, the sheer scale and complexity of the terrain that needs to be surveyed makes detecting them very complicated.

A section by Pascal Febvre, from the University of Savoie, explains how a complete network of SQUIDs dotted around the globe could also aid the detection of solar bursts which send magnetic particles hurtling towards Earth, potentially wreaking havoc with our communication systems.

A similar network of SQUIDs could also help detect the specific magnetic signature of Earthquakes before they strike.

One area already progressing with the help of superconducting technology is high-speed rail travel. Magnetically levitating (Maglev) trains, whereby the carriage is levitated by magnets and has no contact with the track, have already been deployed in Germany, China, Japan and Brazil.

These countries are now looking to develop high temperature superconducting maglev trains which use liquid nitrogen instead of liquid helium to cool the tracks. This is expected to simplify the cooling process, reduce operational costs, offer more stable levitation and allow lighter carriages to be used, according to Motoaki Terai from the Central Japan Railway Company.

Kyeongdal Choi and Woo Seok Kim, from Korea Polytechnic University, explain how high temperature superconducting technologies can be used to effectively store power from wind and solar plants, as the weather dictates how much power can be generated at any one time, unlike non-renewable sources such as coal and oil which have a constant output.

Superconducting cables could also carry an electrical current with no resistance across large distances from the wind and solar power plants to cities and towns. According to Steven Eckroad, from the Electric Power Research Institute, and Adela Marian, from the Institute for Advanced Sustainability Studies, advances in cryogenics, the development of low-cost wires and ac-to-dc current converters will make this technology cost-effective and environmentally friendly.

Professor Shigehiro Nishijima of Osaka University points out the increasing need for clean water for domestic purposes and describes the possibility of using high field magnetic separation systems based on superconducting magnets for this purpose.

For more information about the environmental applications of superconductivity, including high-end computing and motors for ship propulsion, the paper can be downloaded from http://iopscience.org/0953-2048/26/11/113001/article.

Superconductivity Fast Facts:

Superconductivity was first discovered by Dutch physicist Heike Kamerlingh Onnes on 9 April, 1911 in Leiden.

A superconducting material – usually metals or ceramic materials – is one which has zero resistance to an electrical current, usually induced when the material is cooled to temperatures near absolute zero.

An electric current flowing around a loop of superconducting material will experience no resistance and keep going indefinitely, even without a power source.

As superconducting wires can conduct much larger currents than ordinary wire, they create much more intense magnetic fields around them.

These 'superconducting magnets' are used in MRI machines as well as scientific equipment such as mass spectrometers and particle accelerators.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Press Officer, Michael Bishop: Tel: 0117 930 1032 E-mail: michael.bishop@iop.org

For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week.

Login details also give free access to IOPscience, IOP Publishing's journal platform.

To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer, michael.bishop@iop.org, with your name, organisation, address and a preferred username.

Superconductivity and the environment: a roadmap

3. The published version of the paper 'Superconductivity and the environment: a roadmap' (Shigehiro Nishijima et al 2013 Supercond. Sci. Technol. 26 113001) will be freely available online from Monday 16 September. It will be available at http://iopscience.org/0953-2048/26/11/113001/article
Superconductor Science and Technology

4. Superconductor Science and Technology is an international multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.
IOP Publishing

5. IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to ioppublishing.org.

The Institute of Physics

6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Go to http://www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>