Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting Qubit Array Points the Way to Quantum Computers

24.04.2014

A new five-qubit array from UCSB’s Martinis Group is on the threshold of making a quantum computer technologically feasible to build

A fully functional quantum computer is one of the holy grails of physics. Unlike conventional computers, the quantum version uses qubits (quantum bits), which make direct use of the multiple states of quantum phenomena. When realized, a quantum computer will be millions of times more powerful at certain computations than today’s supercomputers.


The five cross-shaped devices are the Xmon variant of the transmon qubit placed in a linear array.

A group of UC Santa Barbara physicists has moved one step closer to making a quantum computer a reality by demonstrating a new level of reliability in a five-qubit array. Their findings appear Thursday in the journal Nature.

Quantum computing is anything but simple. It relies on aspects of quantum mechanics such as superposition. This notion holds that any physical object, such as an atom or electron — what quantum computers use to store information — can exist in all of its theoretical states simultaneously. This could take parallel computing to new heights.

“Quantum hardware is very, very unreliable compared to classical hardware,” says Austin Fowler, a staff scientist in the physics department, whose theoretical work inspired the experiments of the Martinis Group. “Even the best state-of-the-art hardware is unreliable. Our paper shows that for the first time reliability has been reached.”

While the Martinis Group has shown logic operations at the threshold, the array must operate below the threshold to provide an acceptable margin of error. “Qubits are faulty, so error correction is necessary,” said graduate student and co-lead author Julian Kelly who worked on the five-qubit array.

“We need to improve and we would like to scale up to larger systems,” said lead author Rami Barends, a postdoctoral fellow with the group. “The intrinsic physics of control and coupling won’t have to change but the engineering around it is going to be a big challenge.”

The unique configuration of the group’s array results from the flexibility of geometry at the superconductive level, which allowed the scientists to create cross-shaped qubits they named Xmons. Superconductivity results when certain materials are cooled to a critical level that removes electrical resistance and eliminates magnetic fields. The team chose to place five Xmons in a single row, with each qubit talking to its nearest neighbor, a simple but effective arrangement.

“Motivated by theoretical work, we started really thinking seriously about what we had to do to move forward,” said John Martinis, a professor in UCSB’s Department of Physics. “It took us a while to figure out how simple it was, and simple, in the end, was really the best.”

“If you want to build a quantum computer, you need a two-dimensional array of such qubits, and the error rate should be below 1 percent,” said Fowler. “If we can get one order of magnitude lower — in the area of 10-3 or 1 in 1,000 for all our gates — our qubits could become commercially viable. But there are more issues that need to be solved. There are more frequencies to worry about and it’s certainly true that it’s more complex. However, the physics is no different.”

According to Martinis, it was Fowler’s surface code that pointed the way, providing an architecture to put the qubits together in a certain way. “All of a sudden, we knew exactly what it was we wanted to build because of the surface code,” Martinis said. “It took a lot of hard work to figure out how to piece the qubits together and control them properly. The amazing thing is that all of our hopes of how well it would work came true.”

Contact Info: 

Julie Cohen
julie.cohen@ucsb.edu
(805) 893-7220

Julie Cohen | Eurek Alert!
Further information:
http://www.news.ucsb.edu/2014/014074/superconducting-qubit-array-points-way-quantum-computers

More articles from Physics and Astronomy:

nachricht Donuts, math, and superdense teleportation of quantum information
29.05.2015 | University of Illinois College of Engineering

nachricht Physicists precisely measure interaction between atoms and carbon surfaces
29.05.2015 | University of Washington

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>