Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Superconducting Qubit Array Points the Way to Quantum Computers


A new five-qubit array from UCSB’s Martinis Group is on the threshold of making a quantum computer technologically feasible to build

A fully functional quantum computer is one of the holy grails of physics. Unlike conventional computers, the quantum version uses qubits (quantum bits), which make direct use of the multiple states of quantum phenomena. When realized, a quantum computer will be millions of times more powerful at certain computations than today’s supercomputers.

The five cross-shaped devices are the Xmon variant of the transmon qubit placed in a linear array.

A group of UC Santa Barbara physicists has moved one step closer to making a quantum computer a reality by demonstrating a new level of reliability in a five-qubit array. Their findings appear Thursday in the journal Nature.

Quantum computing is anything but simple. It relies on aspects of quantum mechanics such as superposition. This notion holds that any physical object, such as an atom or electron — what quantum computers use to store information — can exist in all of its theoretical states simultaneously. This could take parallel computing to new heights.

“Quantum hardware is very, very unreliable compared to classical hardware,” says Austin Fowler, a staff scientist in the physics department, whose theoretical work inspired the experiments of the Martinis Group. “Even the best state-of-the-art hardware is unreliable. Our paper shows that for the first time reliability has been reached.”

While the Martinis Group has shown logic operations at the threshold, the array must operate below the threshold to provide an acceptable margin of error. “Qubits are faulty, so error correction is necessary,” said graduate student and co-lead author Julian Kelly who worked on the five-qubit array.

“We need to improve and we would like to scale up to larger systems,” said lead author Rami Barends, a postdoctoral fellow with the group. “The intrinsic physics of control and coupling won’t have to change but the engineering around it is going to be a big challenge.”

The unique configuration of the group’s array results from the flexibility of geometry at the superconductive level, which allowed the scientists to create cross-shaped qubits they named Xmons. Superconductivity results when certain materials are cooled to a critical level that removes electrical resistance and eliminates magnetic fields. The team chose to place five Xmons in a single row, with each qubit talking to its nearest neighbor, a simple but effective arrangement.

“Motivated by theoretical work, we started really thinking seriously about what we had to do to move forward,” said John Martinis, a professor in UCSB’s Department of Physics. “It took us a while to figure out how simple it was, and simple, in the end, was really the best.”

“If you want to build a quantum computer, you need a two-dimensional array of such qubits, and the error rate should be below 1 percent,” said Fowler. “If we can get one order of magnitude lower — in the area of 10-3 or 1 in 1,000 for all our gates — our qubits could become commercially viable. But there are more issues that need to be solved. There are more frequencies to worry about and it’s certainly true that it’s more complex. However, the physics is no different.”

According to Martinis, it was Fowler’s surface code that pointed the way, providing an architecture to put the qubits together in a certain way. “All of a sudden, we knew exactly what it was we wanted to build because of the surface code,” Martinis said. “It took a lot of hard work to figure out how to piece the qubits together and control them properly. The amazing thing is that all of our hopes of how well it would work came true.”

Contact Info: 

Julie Cohen
(805) 893-7220

Julie Cohen | Eurek Alert!
Further information:

More articles from Physics and Astronomy:

nachricht A pathfinder for gravitational waves
01.12.2015 | Max Planck Institute for Gravitational Physics (Hannover), Hannover

nachricht Simulation shows key to building powerful magnetic fields
01.12.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>