Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer unravels structures in DVD materials

10.01.2011
First model of rapid phase change in storage material

Although the storage of films and music on a DVD is part of our digital world, the physical basis of the storage mechanism is not understood in detail. In the current issue of the leading journal Nature Materials, researchers from Jülich, Finland, and Japan provide insight into the read and write processes in a DVD. This knowledge should enable improved storage materials to be developed. (DOI: 10.1038/NMAT2931)


Model of crystallization of AIST alloy in a DVD.
Upper left: a laser pulse (hv arrow) causes motion of the central antimony atom (left), which then exchanges its bonds to two neighbours.
Upper right: The green vector sum of the three short red bonds changes.
Below: A sequence of such processes leads from the amorphous (left) to the crystalline form (right). Illustration: Forschungszentrum Jülich

Information is stored in a DVD in the form of microscopic bits (each less than 100 nanometres in size) in a thin layer of a polycrystalline alloy containing several elements. The bits can have a disordered, amorphous or an ordered, crystalline structure. The transition between the two phases lasts only a few nanoseconds and can be triggered by a laser pulse. Common alloys for storage materials such as DVD-RAMs or Blu-ray Discs contain germanium (Ge), antimony (Sb) und tellurium (Te) and are known as GST after the initials of the elements. The most popular alloys for DVD-RW are AIST alloys, which contain small amounts of silver (Ag) and indium (In) as well as antimony (Sb) and tellurium (Te).

"Both alloy families contain antimony and tellurium and appear to have much in common, but the phase change mechanisms are quite different", explains Dr. Robert Jones of Forschungszentrum Jülich, who has collaborated with an international team on the problem. In addition to experimental data and x-ray spectra from the Japanese synchrotron SPring-8, the world's most powerful x-ray source, the team used extensive simulations on the Jülich supercomputer JUGENE. The combination of experiment and simulations has enabled the structures of both phases to be determined for the first time and allowed the development of a model to explain the rapid phase change.

The phase change in AIST alloys proceeds from the outside of the bit, where it adjoins the crystalline surroundings, towards its interior. In Nature Materials, the team explains this using a "bond exchange model", where the local environment in the amorphous bit is changed by small movements of an antimony atom (see figure). A sequence of many such steps results in reorientation (crystallization), without requiring empty regions or large motions. The antimony atoms, stimulated by the laser pulse, have simply exchanged the strengths of the bonds to two neighbours, hence the name „bond exchange" model.

The team had clarified the phase transition in GST materials in earlier work (DOI: 10.1103/PhysRevB.80.020201). Here the amorphous bit crystallizes via nucleation, i.e. small crystallites formed in the interior grow rapidly until they covered the whole bit. The speed of the transition can be explained by observing that amorphous and crystalline phases contain the same structural units, "„ABAB" rings. These four-membered rings contain two germanium or antimony atoms (A) and two tellurium atoms (B) and can rearrange in the available empty space without breaking many atomic bonds.

The calculation of the structure of amorphous AIST is the largest yet performed in this area of research, with simulations of 640 atoms over the comparatively long time of several hundred picoseconds. Some 4000 processors of the Jülich supercomputer JUGENE were used for over four months in order to obtain the necessary precision. In addition to sheer computing power, however, experience in scientific computing and the simulation of condensed matter is essential. Jones notes: "Forschungszentrum Jülich is one of the few places where all these aspects come together."

The deeper theoretical understanding of the processes involved in writing and erasing a DVD should aid the development of phase change storage media with longer life, larger capacity, or shorter access times.

More information on Jülich solid-state research
http://www.fz-juelich.de/iff/
Homepage of Nature Materials:
http://www.nature.com/nmat/index.html
Further information on the topic at:
http://www.fz-juelich.de/portal/index.php?cmd=show&mid=715&index=163
Contact:
Dr. Robert Jones
Tel.: +49 2461 61-4202
r.jones@fz-juelich.de
Press contact:
Kosta Schinarakis
Tel.: +49 2461 61­4771
k.schinarakis@fz-juelich.de
Forschungszentrum Jülich…
pursues cutting-edge interdisciplinary research addressing pressing issues facing society today while at the same time developing key technologies for tomorrow. Research focuses on the areas of health, energy and environment, and information technology. The cooperation of the researchers at Jülich is characterized by outstanding expertise and infrastructure in physics, materials science, nanotechnology, and supercomputing. With a staff of about 4 600, Jülich – a member of the Helmholtz Association – is one of the largest research centres in Europe.

Dr. Robert Jones | EurekAlert!
Further information:
http://www.fz-juelich.de

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>