Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercharged

16.11.2012
Researchers discover technique to kick a record number of electrons out of an atom with an X-ray laser

Supercharging is a technique no longer confined to automotive enthusiasts.

Artem Rudenko, a new assistant professor of physics at Kansas State University and member of the James R. Macdonald Laboratory, was one of the principal investigators in an international physics collaboration that used the world's most powerful X-ray laser to supercharge an atom. By stripping a record 36 electrons from a xenon atom, researchers were able to bring the atom to a high positively charged state thought to unachievable with X-ray energy.

The findings will help scientists create and study extreme new states of matter, such as highly charged plasma, by fine-tuning the laser's X-ray radiation wavelengths in resonance with atomic levels -- resulting in ultra-efficient electron removal.

Conversely, researchers can use the findings to tune the laser wavelength to avoid enhanced electron stripping. This will reduce damage caused by X-rays and help produce better quality images of nano-world objects.

"Taking single-shot, real-time images of viruses, proteins or even smaller objects is a long-standing dream that came close to reality with the advent of powerful X-ray laser like the Linac Coherent Light Source," Rudenko said. "The main problem, however, is that such a laser also inevitably destroys the sample in the process of acquiring an image, and reducing this destruction by any means is critical for producing high-quality images."

The study on supercharging was performed through a large international collaboration led by Daniel Rolles from Max Planck Advanced Study Group, or ASG, in Hamburg, Germany, along with Rudenko and Joachim Ullrich, now a president of the PTB, the German national metrology institute.

"We brought 11 tons of equipment funded by the German Max-Planck Society to LCLS, which is a unique 1.5 km-long X-ray laser operated by Stanford University for the U.S. Department of Energy, and involved scientists from 19 research centers all over the world," Rudenko said. "We also needed to come back one year after our first experiment and repeat the measurements to understand the results. From all that we knew about this process we expected to strip at most 26 electrons, and it immediately became clear that the existing theoretical approaches have to be modified."

For the second leg of experiments physicists chose even higher X-ray energy -- and, surprisingly, saw fewer electrons kicked out of the atom. The key was that even though the energy was higher, it was not in resonance.

"While it is known that resonances in atoms affect their charged states, it was unclear what a dramatic effect this could have in heavy atoms like xenon under ultra-intense X-rays," Rudenko said. "Besides ejecting dozens of electrons, this more than doubled the energy absorbed per atom compared to all expectations."

Follow-up experiments led by Rudenko discovered similar effects in krypton atoms and several molecules.

The results were analyzed by Benedict Rudek from ASG Hamburg and reported in Nature Photonics journal in the article, "Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses," http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.261.html.

For more information on the Linac Coherent Light Source, or LCLS, and the instrument used for the project, go to https://portal.slac.stanford.edu/sites/lcls_public/Pages/Default.aspx and http://today.slac.stanford.edu/feature/2009/lcls-camp.asp

Artem Rudenko | EurekAlert!
Further information:
http://www.ksu.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>