Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-Sensors to Measure ‘Signature’ of Inflationary Universe

05.05.2009
What happened in the first trillionth of a trillionth of a trillionth of a second after the Big Bang?

Super-sensitive microwave detectors, built at the National Institute of Standards and Technology (NIST), may soon help scientists find out.

The new sensors, described today at the American Physical Society (APS) meeting in Denver, were made for a potentially ground-breaking experiment* by a collaboration involving NIST, Princeton University, the University of Colorado at Boulder, and the University of Chicago.

Although NIST is best known for earthbound measurements, a long-standing project at NIST’s Boulder campus plays a critical role in the study of the cosmic microwave background (CMB)—the faint afterglow of the Big Bang that still fills the universe. This project previously built superconducting amplifiers and cameras for CMB experiments at the South Pole, in balloon-borne observatories, and on the Atacama Plateau in Chile.

The new experiment will begin approximately a year from now on the Chilean desert and will consist of placing a large array of powerful NIST sensors on a telescope mounted in a converted shipping container.

The detectors will look for subtle fingerprints in the CMB from primordial gravitational waves—ripples in the fabric of space-time from the violent birth of the universe more than 13 billion years ago. Such waves are believed to have left a faint but unique imprint on the direction of the CMB’s electric field, called the “B-mode polarization.” These waves—never before confirmed through measurements—are potentially detectable today, if sensitive enough equipment is used.

“This is one of the great measurement challenges facing the scientific community over the next 20 years, and one of the most exciting ones as well,” said Kent Irwin, the NIST physicist leading the project.

If found, these waves would be the clearest evidence yet in support of the “inflation theory,” which suggests that all of the currently observable universe expanded rapidly from a subatomic volume, leaving in its wake the telltale cosmic background of gravitational waves.

“The B-mode polarization is the most significant piece of evidence related to inflation that has yet to be observed,” said Ki Won Yoon, a NIST postdoctoral scholar who will describe the project at the APS meeting. “A detection of primordial gravitational waves through CMB polarization would go a long way toward putting the inflation theory on firm ground.”

The data also could provide scientists with insights into different string theory models of the universe and other “unified” theories of physics.

These types of experiments can only be done by studying the universe as a whole, because the particles and electromagnetic fields at the beginning of the inflationary epoch were roughly 10 billion times hotter than the energies attainable by the most powerful particle colliders on Earth today. At this energy scale, fundamental forces now identified as separate are predicted to merge.

“The universe is a physics lab,” Irwin said. “If you look far away, you are actually looking back in time, potentially observing interactions that occurred at energy levels forever out of reach of terrestrial experiments.”

Recent studies of the CMB have focused on measuring slight spatial variations in temperature or power that existed about 380,000 years after the Big Bang. These patterns of radiation allow scientists to characterize the early distributions of matter and energy that evolved into the stars and galaxies of today.

By comparing the measurements to predictions made by various theories, scientists have added to the authoritative history of the universe, narrowing down, for instance, its age (13.7 billion years).

By contrast, the new NIST detectors are designed to measure not only temperature but also the polarization. The B-mode polarization signals may be more than a million times fainter than the temperature signals.

To detect such subtle patterns, the NIST detectors will collect significant amounts of radiation efficiently, and will be free of moving parts and traditional sources of systematic error, such as vibration and magnetic interference, Irwin said. In addition, advanced signal processing and error control will be needed.

The new sensors are prototypes for NIST polarimeter arrays that will greatly increase the sensitivity of future experiments by building thousands of detectors into monolithic units that can be deployed in cryogenic telescope cameras. The new NIST detectors may also have applications closer to home, such as in reducing glare in advanced terahertz imaging systems for detecting weapons and contraband.

As a non-regulatory agency of the U.S. Department of Commerce, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

*Atacama B-mode Search (ABS): Scientific Motivations and Design Overview, Sheraton Denver Hotel, Plaza Court 2, Saturday, May 2, 2009, 1:30 – 1:42 p.m.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>