Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super Resolution Microscopy for Pharmaceutical Industry: Patents granted for 3D complex labeling

22.12.2011
Mechanism of action of drugs in body cells becomes transparent - The LIMON 3D microscopy (LIght MicroscOpical Nanosizing) of Prof. Dr. Dr. Christoph Cremer opens new possibilities for pharmaceutical research. 3D molecular complexes so-called biomolecular machines, targets of drugs can thus be studied in vivo.

"By means of these issued patents, our super resolution microscopy is especially important for molecular biotechnology and the pharmaceutical industry, with emphasis on target identification and personalized medicine," according to Dr. Andrea Nestl, innovation manager of the Technology Licensing Office (TLB) and responsible for the patent management and the commercialization.


In pharmaceutical research, target identification and personalized medicine the super resolution microscopy method LIMON (combination of SPDM and SMI) will play an important role in the future. Picture: 3D nanoscopy of breast cancer with Her3 and Her2, target of the breast cancer drug Herceptin

Biomolecular machines (BMM) are highly complex nanostructures consisting of several large molecules and which are responsible for basic functions in the body cells. Depending on their functional status they have a defined 3D structure. Examples of biomolecular machines are nucleosomes which enable the DNA, a two meter long carrier of genetic information, to fold in the body cells in a space of a few millionth of a millimeter in diameter only. Therefore, the DNA can serve as an information and control center.

By using Professor Christoph Cremer`s LIMON 3D in combination with LIMON complex labeling it is possible for the first time to make hidden proteins or nucleic acids of a 3D-molecule complex of the so-called biomolecular machines visible without destroying the complex. Up to now, the problem in most cases was that the complex had to be destroyed for detailed analysis of the individual macromolecules therein. Alternatively, virtual computer simulation models or expensive nuclear magnetic resonance methods were used to visualize the three-dimensional structure of such complexes.

The issued LIMON patent family allows the identification and the spatial positioning of individual components of the complex in its original native i.e. in a biologically relevant composition.

Besides the usual labeling of a macromolecule with a single fluorescent molecule, LIMON offers the option to label the target molecule with a variety of fluorescent markers of the same type in order to highlight several different areas. This is especially important for the investigation of such complexes in which not all binding sites for labeling probes are accessible, and thus it is difficult to visualize the individual partners.

“The pharmaceutical industry can trace in this way the interactions of biomolecular machines with pharmaceutically active compounds specifically and answer fundamental mechanistic questions about drugs”, according to Dr. Andrea Nestl, responsible for the development of patenting and marketing strategy on behalf of the University of Heidelberg. The mechanism of drug action in the cells becomes thus transparent, and the expensive development of drugs, which reaches the region from 500 million up to 2 billion U.S. dollars and usually lasts for 10 to 12 years, can take place in less time, and additionally, it is less cost-intensive.

The 3D Super Resolution Microscopy LIMON is an excellent tool for the development and validation of therapeutically active substances. As an example for the importance in pharmaceutical industry by using LIMON, it was possible for the first time to investigate in detail the gene product which is responsible for 20 percent of inherited metastatic breast cancer. The aim is the patient-specific optimization of the existing Herceptin therapies.

Due to individual genetic equipment patients with an identical diagnosis often respond very differently to treatment with the same medicine. Personalized medicine considers and takes into account all diagnostic possibilities for characterizing the personal particularities. Thus the Super Resolution Microscopy LIMON patents will offer a significant contribution. The results of this breast cancer study were recently published in the notable Journal of Microscopy (Rainer Kaufmann, Patrick Müller, Georg Hildebrand, Michael Hausmann and Christoph Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy Journal of Microscopy 242: 46-54 (2011).

To realize the 3D LIMON Super Resolution Microscopy Professor Christoph Cremer combines two of his 2D Super Resolution Microscopy methods: the localization microscopy SPDM (Spectral Precision Distance Microscopy) and the structured illumination SMI (Spatially Modulated Illumination), both patented by TLB as well. The main LIMON patents are issued in Europe and in the USA. With this European divisional patent application the third member of the LIMON patent family is being granted.

Christoph Cremer is full Professor and Chair of Applied Optics and Information Processing at the Kirchhoff Institute of Physics, and the Institute of Pharmacy and Molecular Biotechnology (IPMB), both at the University of Heidelberg, and he is group leader in the field of Super Resolution Microscopy at the Institute of Molecular Biology gGmbH (IMB) at the University of Mainz. In addition he is scientific member of the US-American Jackson Laboratory in Bar Harbor / Maine.

Professor Christoph Cremer is longtime coordinator of the BMM-network "Biomolecular Machines / Biomolecular microscopy" of the Rhine-Neckar bioregion, where numerous working groups in Heidelberg participated in the in the fields of medicine, mathematics / computer science, chemistry, pharmacy, physics and biology. Objective target is the quantitative analysis and modeling of "biomolecular machines" outside the cell and within the living cell itself.

Dr. Regina Kratt | idw
Further information:
http://www.tlb.de
http://www.tlb.de/uploads/tx_mmtecdocs/Super_resolution_microscopy_Cremer_2011.pdf

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>