Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super Resolution Microscopy for Pharmaceutical Industry: Patents granted for 3D complex labeling

22.12.2011
Mechanism of action of drugs in body cells becomes transparent - The LIMON 3D microscopy (LIght MicroscOpical Nanosizing) of Prof. Dr. Dr. Christoph Cremer opens new possibilities for pharmaceutical research. 3D molecular complexes so-called biomolecular machines, targets of drugs can thus be studied in vivo.

"By means of these issued patents, our super resolution microscopy is especially important for molecular biotechnology and the pharmaceutical industry, with emphasis on target identification and personalized medicine," according to Dr. Andrea Nestl, innovation manager of the Technology Licensing Office (TLB) and responsible for the patent management and the commercialization.


In pharmaceutical research, target identification and personalized medicine the super resolution microscopy method LIMON (combination of SPDM and SMI) will play an important role in the future. Picture: 3D nanoscopy of breast cancer with Her3 and Her2, target of the breast cancer drug Herceptin

Biomolecular machines (BMM) are highly complex nanostructures consisting of several large molecules and which are responsible for basic functions in the body cells. Depending on their functional status they have a defined 3D structure. Examples of biomolecular machines are nucleosomes which enable the DNA, a two meter long carrier of genetic information, to fold in the body cells in a space of a few millionth of a millimeter in diameter only. Therefore, the DNA can serve as an information and control center.

By using Professor Christoph Cremer`s LIMON 3D in combination with LIMON complex labeling it is possible for the first time to make hidden proteins or nucleic acids of a 3D-molecule complex of the so-called biomolecular machines visible without destroying the complex. Up to now, the problem in most cases was that the complex had to be destroyed for detailed analysis of the individual macromolecules therein. Alternatively, virtual computer simulation models or expensive nuclear magnetic resonance methods were used to visualize the three-dimensional structure of such complexes.

The issued LIMON patent family allows the identification and the spatial positioning of individual components of the complex in its original native i.e. in a biologically relevant composition.

Besides the usual labeling of a macromolecule with a single fluorescent molecule, LIMON offers the option to label the target molecule with a variety of fluorescent markers of the same type in order to highlight several different areas. This is especially important for the investigation of such complexes in which not all binding sites for labeling probes are accessible, and thus it is difficult to visualize the individual partners.

“The pharmaceutical industry can trace in this way the interactions of biomolecular machines with pharmaceutically active compounds specifically and answer fundamental mechanistic questions about drugs”, according to Dr. Andrea Nestl, responsible for the development of patenting and marketing strategy on behalf of the University of Heidelberg. The mechanism of drug action in the cells becomes thus transparent, and the expensive development of drugs, which reaches the region from 500 million up to 2 billion U.S. dollars and usually lasts for 10 to 12 years, can take place in less time, and additionally, it is less cost-intensive.

The 3D Super Resolution Microscopy LIMON is an excellent tool for the development and validation of therapeutically active substances. As an example for the importance in pharmaceutical industry by using LIMON, it was possible for the first time to investigate in detail the gene product which is responsible for 20 percent of inherited metastatic breast cancer. The aim is the patient-specific optimization of the existing Herceptin therapies.

Due to individual genetic equipment patients with an identical diagnosis often respond very differently to treatment with the same medicine. Personalized medicine considers and takes into account all diagnostic possibilities for characterizing the personal particularities. Thus the Super Resolution Microscopy LIMON patents will offer a significant contribution. The results of this breast cancer study were recently published in the notable Journal of Microscopy (Rainer Kaufmann, Patrick Müller, Georg Hildebrand, Michael Hausmann and Christoph Cremer: Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy Journal of Microscopy 242: 46-54 (2011).

To realize the 3D LIMON Super Resolution Microscopy Professor Christoph Cremer combines two of his 2D Super Resolution Microscopy methods: the localization microscopy SPDM (Spectral Precision Distance Microscopy) and the structured illumination SMI (Spatially Modulated Illumination), both patented by TLB as well. The main LIMON patents are issued in Europe and in the USA. With this European divisional patent application the third member of the LIMON patent family is being granted.

Christoph Cremer is full Professor and Chair of Applied Optics and Information Processing at the Kirchhoff Institute of Physics, and the Institute of Pharmacy and Molecular Biotechnology (IPMB), both at the University of Heidelberg, and he is group leader in the field of Super Resolution Microscopy at the Institute of Molecular Biology gGmbH (IMB) at the University of Mainz. In addition he is scientific member of the US-American Jackson Laboratory in Bar Harbor / Maine.

Professor Christoph Cremer is longtime coordinator of the BMM-network "Biomolecular Machines / Biomolecular microscopy" of the Rhine-Neckar bioregion, where numerous working groups in Heidelberg participated in the in the fields of medicine, mathematics / computer science, chemistry, pharmacy, physics and biology. Objective target is the quantitative analysis and modeling of "biomolecular machines" outside the cell and within the living cell itself.

Dr. Regina Kratt | idw
Further information:
http://www.tlb.de
http://www.tlb.de/uploads/tx_mmtecdocs/Super_resolution_microscopy_Cremer_2011.pdf

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>