Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-Earth unlikely able to transfer life to other planets

21.03.2012
While scientists believe conditions suitable for life might exist on the so-called "super-Earth" in the Gliese 581 system, it's unlikely to be transferred to other planets within that solar system.

"One of the big scientific questions is how did life get started and how did it spread through the universe," said Jay Melosh, distinguished professor of earth and atmospheric sciences.

"That question used to be limited to just the Earth, but we now know in our solar system there is a lot of exchange that takes place, and it's quite possible life started on Mars and came to Earth. There's also been a great deal of discussion about the possible spread of life in the universe from star to star."

Moon rocks and Mars meteorites have been found on Earth, which led Melosh to previously suggest living microbes could be exchanged among planets in a similar manner.

A Purdue research team has found that, in contrast to our own solar system, the exchange of living microbes between "super-Earth" and planets in that solar system is not likely to occur.
Laci Brock, a student studying interdisciplinary physics and planetary science, and Melosh will present those findings Tuesday (March 20) at the 43rd Lunar and Planetary Science Conference in The Woodlands, Texas.

Brock examined the Gliese 581 planetary system because Planet d, known as super-Earth, falls in a "habitable zone" where liquid water could possibly exist.

"Laci has found the somewhat surprising result that it is very difficult for materials to spread throughout that system in the same way it could take place in our solar system," Melosh said.

All four planets found in Gliese 581 are within close proximity to their central star, which results in large orbital velocities, Brock said. However, the initial velocity of material leaving Planet d is not enough to allow exchanges among planets.

"Planet d would have a very small chance of transferring material to the other planets in the Gliese system and, thus, is far more isolated, biologically, than the inner planets of our own solar system," Brock said. "It really shows us how unique our solar system is."

Melosh said a more extended solar system would be needed for exchange of materials among planets.
"None of the solar systems that have been found so far would have opportunities for exchange of life among the different planets like what our own solar system offers," he said.

The Opik-Arnold method was used to simulate 10,000 particles being ejected from Planet e and super-Earth. The velocity ranges of the particles were scaled from each of the planet's orbital velocities, which is very high by solar system standards due to the close proximity to their central star.

"Ejections from Planet d have a low probability of impact on any other planet than itself, and most ejected particles would enter an initial hyperbolic orbit and be ejected from the planetary system," Brock said.

Several members of Purdue's planetary sciences department are attending the 43rd Lunar and Planetary Science Conference, presenting research on possible biologic contamination of Mars' moon Phobos by microbes from the surface of Mars; the formation of jets on comets; and gravity anomalies around large lunar craters.

"Purdue has quite a showing of different people at this conference to showcase their work," Melosh said.

Writer: Brian Peloza, 765-494-2081, bpeloza@purdue.edu

Source: Jay Melosh, 765-494-3290, jmelosh@purdue.edu

Note to Journalists: Jay Melosh and Laci Brock will be available for interviews at the 43rd Lunar and Planetary Science Conference. To speak with Brock at a different time, contact Brian Peloza, Purdue News Service, at 765-494-2081, bpeloza@purdue.edu

Related information:
"Impact Exchange Between Planets of Gliese 581" poster presentation

Brian Peloza | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>