Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Super-Earth unlikely able to transfer life to other planets

While scientists believe conditions suitable for life might exist on the so-called "super-Earth" in the Gliese 581 system, it's unlikely to be transferred to other planets within that solar system.

"One of the big scientific questions is how did life get started and how did it spread through the universe," said Jay Melosh, distinguished professor of earth and atmospheric sciences.

"That question used to be limited to just the Earth, but we now know in our solar system there is a lot of exchange that takes place, and it's quite possible life started on Mars and came to Earth. There's also been a great deal of discussion about the possible spread of life in the universe from star to star."

Moon rocks and Mars meteorites have been found on Earth, which led Melosh to previously suggest living microbes could be exchanged among planets in a similar manner.

A Purdue research team has found that, in contrast to our own solar system, the exchange of living microbes between "super-Earth" and planets in that solar system is not likely to occur.
Laci Brock, a student studying interdisciplinary physics and planetary science, and Melosh will present those findings Tuesday (March 20) at the 43rd Lunar and Planetary Science Conference in The Woodlands, Texas.

Brock examined the Gliese 581 planetary system because Planet d, known as super-Earth, falls in a "habitable zone" where liquid water could possibly exist.

"Laci has found the somewhat surprising result that it is very difficult for materials to spread throughout that system in the same way it could take place in our solar system," Melosh said.

All four planets found in Gliese 581 are within close proximity to their central star, which results in large orbital velocities, Brock said. However, the initial velocity of material leaving Planet d is not enough to allow exchanges among planets.

"Planet d would have a very small chance of transferring material to the other planets in the Gliese system and, thus, is far more isolated, biologically, than the inner planets of our own solar system," Brock said. "It really shows us how unique our solar system is."

Melosh said a more extended solar system would be needed for exchange of materials among planets.
"None of the solar systems that have been found so far would have opportunities for exchange of life among the different planets like what our own solar system offers," he said.

The Opik-Arnold method was used to simulate 10,000 particles being ejected from Planet e and super-Earth. The velocity ranges of the particles were scaled from each of the planet's orbital velocities, which is very high by solar system standards due to the close proximity to their central star.

"Ejections from Planet d have a low probability of impact on any other planet than itself, and most ejected particles would enter an initial hyperbolic orbit and be ejected from the planetary system," Brock said.

Several members of Purdue's planetary sciences department are attending the 43rd Lunar and Planetary Science Conference, presenting research on possible biologic contamination of Mars' moon Phobos by microbes from the surface of Mars; the formation of jets on comets; and gravity anomalies around large lunar craters.

"Purdue has quite a showing of different people at this conference to showcase their work," Melosh said.

Writer: Brian Peloza, 765-494-2081,

Source: Jay Melosh, 765-494-3290,

Note to Journalists: Jay Melosh and Laci Brock will be available for interviews at the 43rd Lunar and Planetary Science Conference. To speak with Brock at a different time, contact Brian Peloza, Purdue News Service, at 765-494-2081,

Related information:
"Impact Exchange Between Planets of Gliese 581" poster presentation

Brian Peloza | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>