Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are sunspots a source of radio emissions?

26.08.2010
NJIT researcher explains more

Why sunspots are a strong source of radio emissions and what information those emissions carry will be the focus of an invited talk by NJIT Research Professor Jeongwoo Lee tomorrow at the International Astronomical Union Symposium on the Physics of Sun and Star Spots in Ventura, CA. http://www.csun.edu/physicsandastronomy/IAUS273/ The event numbers among the top gatherings in the U.S. for people studying sunspots and related phenomena.

Lee, who will speak Aug. 26, 2010, will highlight Owens Valley Solar Array (OVSA), one of the two unique frequency-agile radio telescopes in the world. NJIT has managed and operated the facility since 1997. Research opportunities there coupled with Lee's earlier article-- "Radio Emissions from Solar Active Regions" Space Science Reviews, Vol. 133, 73-102 http://www.springerlink.com/content/6533674378432313/ --will be the foundation for the talk.

Owens Valley Solar Array features an unusually large number of frequencies (up to 86) in the range of 1—18 GHz, which can exploit the unique sensitivity of the gyroresonant spectrum to coronal magnetic fields. The imaging spectroscopy (a technique for constructing spectrum in every spatial point of interest) of sunspots implemented with the OVSA is one of the best examples for unambiguous observational determination of the coronal magnetic field and temperature.

Why are sunspots such strong sources of radio emission? "The solar corona is of tenuous plasma which is generally too faint to be detected by ground-based observations," he said. "Sunspots, though, appear to be very bright at centimeter wavelengths because hot electrons (which are millions of degrees) gyrate in the coronal magnetic field. As they gyrate, they produce an efficient radiation called gyroresonant emission. This emission can serve as an excellent indicator of the magnetic field and temperature in the coronae above sunspots. The ability to measure these quantities without the complications arising in other solar radiations is a particular advantage for studying sunspot radio emissions."

The lecture will also look at the contributions of the premier radio array for astronomical observations operated by the National Radio Astronomy Observatory known as the "Very Large Array" (VLA). This facility is capable of high-quality imaging at a few wavelengths in the centimeter range. VLA solar images have been used to perform many studies of sunspot physics. Highlights of the VLA's scientific achievements include findings of inhomogeneous structures of plasma and magnetic fields, and the presence of electric currents and waves in the sunspot coronae.

The Nobeyama Radioheliograph (NoRH), a solar-dedicated radio heliograph in Japan, will also be covered. This facility has made an important contribution to understanding the evolving nature of sunspot emissions. The radio synoptic map and butterfly diagram constructed with the eighteen-year measurement of the solar full disk provides an important clue to understanding the nature of the solar cycle.

The talk concludes with a plea to support a new generation of radio telescopes, a dream that Lee and his NJIT colleagues, as well as NRAO, is already pursuing.

"Such an array should feature as many frequencies as Owens Valley Solar Array offers and as high-resolution imaging as the VLA performs," Lee said. "It will advance the study of three-dimensional structures of temperature and magnetic fields above sunspots. And, it will allow scientists to continue monitoring time-dependent solar radio activity, such as rapid transient heating, sunspot oscillations, and solar cycle dependence of coronal temperature."

NJIT, New Jersey's science and technology university,enrolls more than 8,800 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2010 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Office of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>