Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight spawns many binary and 'divorced' binary asteroids

25.08.2010
Study of divorced binaries shows many probably were asteroids that fissioned and drifted apart

The asteroid belt between Mars and Jupiter is often depicted as a dull zone of dead rocks with an occasional wayward speedster smashing through on its way toward the sun.

A new study appearing in the Aug. 26 issue of the journal Nature paints a different picture, one of slow but steady change, where sunlight gradually drives asteroids to split in two and move far apart to become independent asteroids among the millions orbiting the sun.

"This shows that asteroids are not inert, dead bodies of no interest," said study co-author Franck Marchis, a research astronomer at the University of California, Berkeley, and the SETI Institute in Mountain View, Calif. "In fact, small asteroids very slowly evolve into binaries and, eventually, divorced binaries."

Marchis, who studies double- and triple-asteroid systems, teamed up with former UC Berkeley undergraduate Brent Macomber to analyze two pairs of former or "divorced" binaries, which are asteroid pairs that have drifted apart and are no longer gravitationally bound to one another. Macomber, now a graduate student at Texas A&M University, participated through UC Berkeley's Undergraduate Research Apprentice Program (URAP), which matches students with researchers in need of assistance.

Marchis and Macomber contributed their findings to a group of astronomers in the Czech Republic, who analyzed the evolution of 35 pairs of divorced binaries. The leader of that group, Petr Pravec of the Astronomical Institute in the Czech Republic, and 25 colleagues from 15 other institutions published the results this week, showing that all of the asteroid pairs have similar relative masses and relative velocities that point to a similar origin by fission.

The conclusion fits a theory of binary asteroid formation originated by co-author Daniel Scheeres, a professor of aerospace engineering sciences at the University of Colorado, Boulder. His theory predicts that if a binary asteroid forms by rotational fission, the two can only escape from each other if the smaller one is less than 60 percent the size of the larger asteroid. Of all the asteroid pairs in the study, the smallest of each pair was always less than 60 percent of the mass of its companion asteroid.

Of the estimated one million asteroids 1 kilometer or more in diameter orbiting the sun, many are thought to be rubble piles of smaller rocks gravitationally bound together. Previous research has shown that asteroid rubble piles less than 10 kilometers in diameter can start rotating faster because of the Yarkovsky–O'Keefe–Radzievskii–Paddack (YORP) effect: the imbalance between sunlight absorbed on one side of an out-of-round asteroid and heat radiated on the other makes it spin.

"Sunlight striking an asteroid less than 10 kilometers across can change its rotation over millions of years, a slow motion version of how a windmill reacts to the wind," Scheeres said.

As an asteroid spins up, the equator bulges and the rocks at the extreme edge eventually reach escape velocity and detach. The detached rocks coalesce into a moonlet and, over millions of years, the primary and secondary asteroids "separate gently from each other at relatively low velocities," Scheeres said.

"This slow process, rather than catastrophic demolition, replenishes the population of binary asteroids, and accounts for the many binaries and ex-binaries that we see," Marchis said, noting that 10-15 percent of all small asteroids could be a binary system.

The researchers focused on so-called "asteroid pairs": independent asteroids in the same orbit around the sun that have come close to each other – usually within a few miles – at very low relative speeds at some point in the past million years. Asteroid pairs were first discovered in 2008 by co-author David Vokrouhlicky of Charles University in Prague, Czech Republic, but their formation process remained a mystery prior to the new study.

Suspecting that asteroid pairs were at one point binary asteroid systems, Pravec asked collaborators to measure two characteristics of each of the 35 asteroid pairs: the relative brightness of each asteroid – which correlates to its size – and the spin rates of the asteroid pairs using a technique known as photometry.

The 35 asteroids in the study ranged from about 1 to 10 kilometers (0.6 - 6 miles) in diameter. Observations were contributed by co-authors from institutions in North Carolina, California, Massachusetts, Chile, Israel, Slovakia, the Ukraine, Spain and France.

Macomber's contributions to research are not unusual for a UC Berkeley undergraduate. More than 1,400 students were involved in research last year in all fields of science, social science and the humanities.

"In the three years that I worked with Dr. Marchis, I got more experience than I could have possibly imagined in all aspects of observational astronomy, everything from planning a night of observations, to collecting data with advanced adaptive optics imagers, to processing the data after the observations are completed," said Macomber, who obtained his bachelor's in physics and astronomy in December 2008, worked for a semester with Marchis at the SETI Institute and is now a Bradley Fellow in the Department of Aerospace Engineering at Texas A&M. "The most important thing I learned was how real science works, the process of collaborating with a team around the world to collect observations, analyze them and publish scientific results."

"When students work with us, they can be involved in state-of-the-art research and make a real contribution to science," Marchis said.

The contributions of Marchis and Macomber, obtained using the Lick Observatory's 1-meter Nickel telescope, were supported by the National Science Foundation.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>