Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using the sun to illuminate a basic mystery of matter

Antimatter has been detected in solar flares via microwave and magnetic-field data, according to a presentation by NJIT Research Professor of Physics Gregory D. Fleishman and two co-researchers at the 44th meeting of the American Astronomical Society's Solar Physics Division. This research sheds light on the puzzling strong asymmetry between matter and antimatter by gathering data on a very large scale using the Sun as a laboratory.

While antiparticles can be created and then detected with costly and complex particle-accelerator experiments, such particles are otherwise very difficult to study. However, Fleishman and the two co-researchers have reported the first remote detection of relativistic antiparticles — positrons — produced in nuclear interactions of accelerated ions in solar flares through the analysis of readily available microwave and magnetic-field data obtained from solar-dedicated facilities and spacecraft. That such particles are created in solar flares is not a surprise, but this is the first time their immediate effects have been detected.

The results of this research have far-reaching implications for gaining valuable knowledge through remote detection of relativistic antiparticles at the Sun and, potentially, other astrophysical objects by means of radio-telescope observations. The ability to detect these antiparticles in an astrophysical source promises to enhance our understanding of the basic structure of matter and high-energy processes such as solar flares, which regularly have a widespread and disruptive terrestrial impact, but also offer a natural laboratory to address the most fundamental mysteries of the universe we live in.

Electrons and their antiparticles, positrons, have the same physical behavior except that electrons have a negative charge while positrons, as their name implies, have a positive charge. This charge difference causes positrons to emit the opposite sense of circularly polarized radio emission, which Fleishman and his colleagues used to distinguish them. To do that required knowledge of the magnetic field direction in the solar flare, provided by NASA's Solar and Heliospheric Observatory (SOHO), and radio images at two frequencies from Japan's Nobeyama Radioheliograph. Fleishman and his colleagues found that the radio emission from the flare was polarized in the normal sense (due to more numerous electrons) at the lower frequency (lower energy) where the effect of positrons is expected to be small, but reversed to the opposite sense at the same location, although at the higher frequency (higher energy) where positrons can dominate.

Fleishman, who is affiliated with the NJIT Center for Solar-Terrestrial Research, worked with Alexander T. Altyntsev and Natalia S. Meshalkina, Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences. They are presenting their research in a paper titled "Discovery of Relativistic Positrons in Solar Flares" at the 44th meeting of the Solar Physics Division of the American Astronomical Society, held in Bozeman, Montana, July 8-11.

NJIT, New Jersey's science and technology university, enrolls approximately 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2012 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.

Sheryl Weinstein | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>