Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sun experiences seasonal changes, new research finds

07.04.2015

Quasi-annual variations may hold clues to space weather

The Sun undergoes a type of seasonal variability with its activity waxing and waning over the course of nearly two years, according to a new study by a team of researchers led by the National Center for Atmospheric Research (NCAR). This behavior affects the peaks and valleys in the approximately 11-year solar cycle, sometimes amplifying and sometimes weakening the solar storms that can buffet Earth's atmosphere.


A number of NASA instruments captured detailed images of this coronal mass ejection on Aug. 31, 2012. Although CMEs can damage sensitive technological systems, this one just struck a glancing blow to Earth's atmosphere. New research that quasi-annual variations in solar activity, which may help experts better forecast these powerful events.

Image by NASA

The quasi-annual variations appear to be driven by changes in the bands of strong magnetic fields in each solar hemisphere. These bands also help shape the approximately 11-year solar cycle that is part of a longer cycle that lasts about 22 years.

"What we're looking at here is a massive driver of solar storms," said Scott McIntosh, lead author of the new study and director of NCAR's High Altitude Observatory. "By better understanding how these activity bands form in the Sun and cause seasonal instabilities, there's the potential to greatly improve forecasts of space weather events."

The overlapping bands are fueled by the rotation of the Sun's deep interior, according to observations by the research team. As the bands move within the Sun's northern and southern hemispheres, activity rises to a peak over a period of about 11 months and then begins to wane.

The quasi-annual variations can be likened to regions on Earth that have two seasons, such as a rainy season and a dry season, McIntosh said.

The study, published this week in Nature Communications, can help lead to better predictions of massive geomagnetic storms in Earth's outer atmosphere that sometimes disrupt satellite operations, communications, power grids, and other technologies.

The research was funded by NASA and the National Science Foundation, which is NCAR's sponsor.

A "jet stream" in the Sun

The new study is one of a series of papers by the research team that examines the influence of the magnetic bands on several interrelated cycles of solar magnetism. In a paper last year in Astrophysical Journal, the authors characterized the approximately 11-year sunspot cycle in terms of two overlapping parallel bands of opposite magnetic polarity that slowly migrate over almost 22 years from high solar latitudes toward the equator, where they meet and terminate.

McIntosh and his co-authors detected the twisted, ring-shaped bands by drawing on a host of NASA satellites and ground-based observatories that gather information on the structure of the Sun and the nature of solar flares and coronal mass ejections (CMEs). These observations revealed the bands in the form of fluctuations in the density of magnetic fuel that rose from the solar interior through a transition region known as the tachocline and on to the surface, where they correlated with changes in flares and CMEs.

In the new paper, the authors conclude that the migrating bands produce seasonal variations in solar activity that are as strong as the more familiar 11-year counterpart. These quasi-annual variations take place separately in both the northern and southern hemispheres.

"Much like Earth's jet stream, whose warps and waves have had severe impact on our regional weather patterns in the past couple of winters, the bands on the Sun have very slow-moving waves that can expand and warp it too," said co-author Robert Leamon, a scientist at Montana State University. "Sometimes this results in magnetic fields leaking from one band to the other. In other cases, the warp drags magnetic fields from deep in the solar interior, near the tachocline, and pushes them toward the surface."

The surges of magnetic fuel from the Sun's interior catastrophically destabilize the corona, the Sun's outermost atmosphere. They are the driving force behind the most destructive solar storms.

"These surges or 'whomps' as we have dubbed them, are responsible for over 95 percent of the large flares and CMEs--the ones that are really devastating," McIntosh said.

The quasi-annual variability can also help explain a cold-war era puzzle: why do powerful solar flares and CMEs often peak a year or more after the maximum number of sunspots? This lag is known as the Gnevyshev Gap, after the Soviet scientist who first reported it in the 1940s. The answer appears to be that seasonal changes may cause an upswing in solar disturbances long after the peak in the solar cycle.

Researchers can turn to advanced computer simulations and more detailed observations to learn more about the profound influence of the bands on solar activity. McIntosh said this could be assisted by a proposed network of satellites observing the Sun, much as the global networks of satellites around Earth have helped advance terrestrial weather models since the 1960s.

"If you understand what the patterns of solar activity are telling you, you'll know whether we're in the stormy phase or the quiet phase in each hemisphere," McIntosh said. "If we can combine these pieces of information, forecast skill goes through the roof."

###

About the article

Title: The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability

Authors: Scott W. McIntosh, Robert J. Leamon, Larisza D. Krista, Alan M. Title, Hugh S. Hudson, Pete Riley, Jerald W. Harder, Greg Kopp, Martin Snow, Thomas N. Woods, Justin C. Kasper, Michael L. Stevens, and Roger K. Ulrich

Publication: Nature Communications

On the Web

For news releases, images, and more: http://www.ucar.edu/atmosnews

The University Corporation for Atmospheric Research (UCAR) manages NCAR under sponsorship by the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this release do not necessarily reflect the views of the National Science Foundation.

Media Contact

Media Contact

David Hosansky
hosansky@ucar.edu
303-497-8611

Zhenya Gallon
zhenya@ucar.edu
303-497-8607

National Center for Atmospheric Research/University Corporation for Atmospheric Research

David Hosansky | EurekAlert!

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>