Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suddenly Magnetic

10.04.2013
It came as a surprise: If tin atoms are arranged on a silicon substrate in a special way, the material becomes magnetic. University of Würzburg physicists have successfully conducted such an experiment. This research might open up a new way of processing information.
Take a small, thin silicon disk and deposit tin atoms on its surface in a regular pattern. Although both starting materials do not possess any magnetic properties, their combination induces a magnetic state – a surprising result. University of Würzburg physicists have succeeded in producing this effect experimentally. Their research is reported in the current issue of the prestigious journal Nature Communications.

Regular patterns make it possible

According to Dr. Jörg Schäfer, the unexpected magnetism is attributable to "regularly ordered patterns of electron spin". Schäfer is a private lecturer at the Department for Experimental Physics IV of the University of Würzburg. Working in the study group of Professor Ralph Claessen, who heads the department, he was in charge of the decisive experiments; the theoretical simulation was conducted at the Department for Theoretical Physics I, headed by Professor Werner Hanke.

Spin: It is the intrinsic angular momentum of electrons. Electrons are electrically charged so that this rotation automatically creates a magnetic field. Thus, they are like tiny magnets. As a rule, however, this has no consequences: The enormous number of electrons that are present even in minute quantities of a substance and the fact that these "electron magnets" point randomly in all directions cause them to cancel out as a whole.

When atoms sense each other

The magnetic properties found by the Würzburg physicists in their experiments are due to a special reason: "The clever arrangement of individually deposited metal atoms gives rise to regularly ordered patterns of electron spin," Jörg Schäfer explains. After adsorption on the silicon substrate, each atom only possessed one electron together with its spin in the outermost orbital – a so-called valence electron. Such electrons were able to get in contact with a neighboring atom, which process can be pictured as electron hopping between the atoms. Only then is it possible for the electron spins to sense each other in their various positions and to align themselves accordingly.

However, there was yet another mystery for the physicists to solve: The metal atoms arranged themselves on the silicon substrate at evenly spaced distances in what is called a "triangular lattice" as the scientists found out in their experiments.

The problem of frustration

The problem: Nature tends to prefer a spin arrangement in which the spins of neighboring positions point in opposite directions," says Jörg Schäfer. But how is this supposed to work in a triangle – which spin should the third partner anti-align with? A seemingly insolvable problem, for which reason it is known as the "problem of frustration" in physics. After thorough examination, the scientists were able to determine how the problem was solved in their experiment: "The spins of the tin atoms arranged themselves on the silicon substrate in an unusual pattern with row-wise alternating spin orientation," Schäfer explains (see illustration).

According to Schäfer, this discovery of magnetic order essentially illustrates the astonishing possibilities opening up for the control of electrical interactions on an atomic scale. Our study thus suggests an approach for the implementation of spin-based information processing on the basis of well-established semiconductor materials, such as silicon, where the data are magnetically coded.

Close collaboration between theoretical and experimental physicists

The experiment of the Würzburg researchers was conducted within the DFG-funded research unit FOR 1162 "Electron Correlation-Induced Phenomena in Surfaces and Interfaces with Tunable Interactions". The project involved a close collaboration between theoretical and experimental physicists: The atom lattice and the hopping processes of the electrons were modeled in complex computer simulations at the Department for Theoretical Physics I. The experiments were conducted at the Department for Experimental Physics IV.

The physicists gained insight into the spin arrangement by means of photoelectron spectroscopy. In this method, the ejection of electrons from the surface of a sample is induced by exposure to X-ray radiation and the properties of the emitted electrons are then analyzed. The required information on the magnetic order can be derived from their energy distribution and angular distribution," says Schäfer. Their behavior was also modeled in parallel in so-called many body calculations, where the spin pattern was directly factored in.

Both methods are in agreement with respect to the electron signals

The results of both variants surprised the scientists: Both methods showed corresponding patterns of signal intensity caused by a periodic spin arrangement. "A surprising result" in Schäfer's opinion – especially considering that only non-magnetic components were used in the experiment.

“Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface”. Gang Li, Philipp Höpfner, Jörg Schäfer, Sebastian Meyer, Aaron Bostwick, Eli Rotenberg, Ralph Claessen, Werner Hanke. Nature Communications, DOI: 10.1038/ncomms2617

Contact person

Prof. Dr. Werner Hanke, T: +49 (0)931 31-85714,
hanke@physik.uni-wuerzburg.de

Prof. Dr. Ralph Claessen, T: +49 (0) 931 31-85732,
claessen@physik.uni-wuerzburg.de

PD Dr. Jörg Schäfer, T: +49 (0)931 31-83483,
joerg.schaefer@physik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>