Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SU plays key role in search for elusive dark matter

11.04.2014

Physicist Richard Schnee hopes to find traces of dark matter by studying particles with low masses and interaction rates, some of which have never been probed before

Physicist Richard Schnee hopes to find traces of dark matter by studying particles with low masses and interaction rates, some of which have never been probed before.


This is assistant professor Richard Schnee.

Credit: Syracuse University

The ongoing search for invisible dark matter is the subject of a recent article involving physicists from Syracuse University's College of Arts and Sciences.

Research by Richard Schnee, assistant professor of physics, is referenced in Symmetry magazine, a joint publication of the Stanford Linear Accelerator Center in Palo Alto, Calif., and Fermilab in Batavia, Ill.

"Scientists looking for dark matter face a serious challenge, in that no one knows its properties," says Schnee, also principal investigator of the Cryogenic Dark Matter Search (CDMS) Physics Lab at SU. "Experiments have seen no signs of dark matter particles that have high masses, but a few experiments have claimed hints of possible interactions from dark matter particles with low masses."

An expert in particle physics, Schnee hopes to find traces of dark matter with an experiment that is more sensitive to such low-mass dark matter particles.

He and his postdoctoral research associate, Raymond Bunker, are part of a multinational team of scientists working on SuperCDMS, an experiment in the University of Minnesota's Soudan Underground Laboratory that is designed to detect dark matter. (In addition to leading part of the experiment's data analysis, Bunker helped edit a paper about the experiment that has been submitted to Physical Review Letters.) Schnee's team is rounded out by two graduate students: Yu Chen and Michael Bowles.

Although dark matter has never been seen directly, it is thought to be six times more prevalent in the universe than normal matter.

"Everywhere we look, objects are accelerating due to gravity, but the acceleration is too large to be caused by only the matter we see," Schnee says. "Even more remarkably, we can infer that this extra dark matter is composed not of normal atoms, but other kinds of particles."

Scientists believe the mystery particles are WIMPs (Weakly Interacting Massive Particles), which travel at hundreds of thousands miles per hour through space and shower the Earth on a continuous basis. Unlike normal matter, WIMPs do not absorb or emit light, so they cannot be viewed with a telescope.

"Spotting the occasional WIMP that interacts with something is extremely challenging because particle interactions from natural radioactivity occur at a much higher rate. Detecting a WIMP is like spotting a needle in a haystack," Schnee continues.

Enter CDMS, whose hyper-sensitive detectors can differentiate between rare WIMP interactions and common ones involving radioactivity. The size of a hockey puck, a CDMS detector is made up of a semiconductor crystal of germanium that, when cooled to almost absolute zero, can detect individual particular interactions.

The presence of layers of Earth--like those at the Soudan lab--provide additional shielding from cosmic rays that otherwise would clutter the detector, as it waits for passing dark matter particles.

"We cool our detectors to very low temperatures, so we can detect small energies that are deposited by the collisions of dark matter particles with the germanium," says Schnee. "Other materials, including argon, xenon, and silicon, are also used to detect low-mass dark matter particles. We need to consider as many materials as possible, along with germanium."

SU is one of 14 universities working collaboratively in the search for WIMPs. In the Physics Building, Schnee and his team have constructed an ultra-low radon "clean room," in hopes of reducing the number of interactions from radioactivity that look like WIMPs. (Alpha and beta emissions from radon, a type of radioactive gas, can mimic WIMP interactions in a detector.)

"Unfortunately, radon is all around us, so, even with this 'clean room,' some radon-induced interactions will still mimic WIMPs," Schnee says. "All of us are building different types of detectors and are constantly improving our methods, in hopes of spotting WIMP interactions."

###

Housed in The College, the Department of Physics has been educating students and carrying out research for more than 125 years. Graduate and undergraduate opportunities are available in fields ranging from biological and condensed matter physics, to cosmology and particle physics, to gravitational wave detection and astrophysics.

Rob Enslin | Eurek Alert!

Further reports about: CDMS Syracuse WIMP collisions dark matter detector mimic particles traces

More articles from Physics and Astronomy:

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

nachricht New survey hints at exotic origin for the Cold Spot
26.04.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>