Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SU plays key role in search for elusive dark matter

11.04.2014

Physicist Richard Schnee hopes to find traces of dark matter by studying particles with low masses and interaction rates, some of which have never been probed before

Physicist Richard Schnee hopes to find traces of dark matter by studying particles with low masses and interaction rates, some of which have never been probed before.


This is assistant professor Richard Schnee.

Credit: Syracuse University

The ongoing search for invisible dark matter is the subject of a recent article involving physicists from Syracuse University's College of Arts and Sciences.

Research by Richard Schnee, assistant professor of physics, is referenced in Symmetry magazine, a joint publication of the Stanford Linear Accelerator Center in Palo Alto, Calif., and Fermilab in Batavia, Ill.

"Scientists looking for dark matter face a serious challenge, in that no one knows its properties," says Schnee, also principal investigator of the Cryogenic Dark Matter Search (CDMS) Physics Lab at SU. "Experiments have seen no signs of dark matter particles that have high masses, but a few experiments have claimed hints of possible interactions from dark matter particles with low masses."

An expert in particle physics, Schnee hopes to find traces of dark matter with an experiment that is more sensitive to such low-mass dark matter particles.

He and his postdoctoral research associate, Raymond Bunker, are part of a multinational team of scientists working on SuperCDMS, an experiment in the University of Minnesota's Soudan Underground Laboratory that is designed to detect dark matter. (In addition to leading part of the experiment's data analysis, Bunker helped edit a paper about the experiment that has been submitted to Physical Review Letters.) Schnee's team is rounded out by two graduate students: Yu Chen and Michael Bowles.

Although dark matter has never been seen directly, it is thought to be six times more prevalent in the universe than normal matter.

"Everywhere we look, objects are accelerating due to gravity, but the acceleration is too large to be caused by only the matter we see," Schnee says. "Even more remarkably, we can infer that this extra dark matter is composed not of normal atoms, but other kinds of particles."

Scientists believe the mystery particles are WIMPs (Weakly Interacting Massive Particles), which travel at hundreds of thousands miles per hour through space and shower the Earth on a continuous basis. Unlike normal matter, WIMPs do not absorb or emit light, so they cannot be viewed with a telescope.

"Spotting the occasional WIMP that interacts with something is extremely challenging because particle interactions from natural radioactivity occur at a much higher rate. Detecting a WIMP is like spotting a needle in a haystack," Schnee continues.

Enter CDMS, whose hyper-sensitive detectors can differentiate between rare WIMP interactions and common ones involving radioactivity. The size of a hockey puck, a CDMS detector is made up of a semiconductor crystal of germanium that, when cooled to almost absolute zero, can detect individual particular interactions.

The presence of layers of Earth--like those at the Soudan lab--provide additional shielding from cosmic rays that otherwise would clutter the detector, as it waits for passing dark matter particles.

"We cool our detectors to very low temperatures, so we can detect small energies that are deposited by the collisions of dark matter particles with the germanium," says Schnee. "Other materials, including argon, xenon, and silicon, are also used to detect low-mass dark matter particles. We need to consider as many materials as possible, along with germanium."

SU is one of 14 universities working collaboratively in the search for WIMPs. In the Physics Building, Schnee and his team have constructed an ultra-low radon "clean room," in hopes of reducing the number of interactions from radioactivity that look like WIMPs. (Alpha and beta emissions from radon, a type of radioactive gas, can mimic WIMP interactions in a detector.)

"Unfortunately, radon is all around us, so, even with this 'clean room,' some radon-induced interactions will still mimic WIMPs," Schnee says. "All of us are building different types of detectors and are constantly improving our methods, in hopes of spotting WIMP interactions."

###

Housed in The College, the Department of Physics has been educating students and carrying out research for more than 125 years. Graduate and undergraduate opportunities are available in fields ranging from biological and condensed matter physics, to cosmology and particle physics, to gravitational wave detection and astrophysics.

Rob Enslin | Eurek Alert!

Further reports about: CDMS Syracuse WIMP collisions dark matter detector mimic particles traces

More articles from Physics and Astronomy:

nachricht The Dawn of DUNE
30.03.2015 | Fermi National Accelerator Laboratory (Fermilab)

nachricht NASA's Hubble and Chandra Discover Dark Matter Is Not as Sticky as Once Thought
30.03.2015 | Space Telescope Science Institute (STScI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

BLS Cargo orders 15 multisystem locomotives

30.03.2015 | Press release

Shark Tagged by NSU’s Guy Harvey Research Institute Is Apparently Enjoying Time in Warm, Tropical Waters

30.03.2015 | Life Sciences

Antarctic Ice Shelves Rapidly Thinning

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>