Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study at SLAC explains atomic action in high-temperature superconductors

13.11.2014

Results are first to suggest how to engineer even warmer superconductors with atom-by-atom control

A study at the Department of Energy's SLAC National Accelerator Laboratory suggests for the first time how scientists might deliberately engineer superconductors that work at higher temperatures.


In this illustration, a single layer of superconducting iron selenide (balls and sticks) has been placed stop another material known as STO for its main ingredients selenium, titanium and oxygen. The STO is shown as blue pyramids, which represent the arrangement of its atoms. A study at SLAC found that when natural vibrations (green glow) from the STO move up into the iron selenide film, electrons in the film (white spheres) can pair up and conduct electricity with 100 percent efficiency at much higher temperatures than before. The results suggest a way to deliberately engineer superconductors that work at even higher temperatures.

Credit: SLAC National Accelerator Laboratory

In their report, a team led by SLAC and Stanford University researchers explains why a thin layer of iron selenide superconducts -- carries electricity with 100 percent efficiency -- at much higher temperatures when placed atop another material, which is called STO for its main ingredients strontium, titanium and oxygen.

These findings, described today in the journal Nature, open a new chapter in the 30-year quest to develop superconductors that operate at room temperature, which could revolutionize society by making virtually everything that runs on electricity much more efficient. Although today's high-temperature superconductors operate at much warmer temperatures than conventional superconductors do, they still work only when chilled to minus 135 degrees Celsius or below.

In the new study, the scientists concluded that natural trillion-times-per-second vibrations in the STO travel up into the iron selenide film in distinct packets, like volleys of water droplets shaken off by a wet dog. These vibrations give electrons the energy they need to pair up and superconduct at higher temperatures than they would on their own.

"Our simulations indicate that this approach - using natural vibrations in one material to boost superconductivity in another - could be used to raise the operating temperature of iron-based superconductors by at least 50 percent," said Zhi-Xun Shen, a professor at SLAC and Stanford University and senior author of the study.

While that's still nowhere close to room temperature, he added, "We now have the first example of a mechanism that could be used to engineer high-temperature superconductors with atom-by-atom control and make them better."

Spying on Electrons

The study probed a happy combination of materials developed two years ago by scientists in China. They discovered that when a single layer of iron selenide film is placed atop STO, its maximum superconducting temperature shoots up from 8 degrees to nearly 77 degrees above absolute zero (minus 196 degrees Celsius).

While this was a huge and welcome leap, it would be hard to build on this advance without understanding what, exactly, was going on.

In the new study, SLAC Staff Scientist Rob Moore and Stanford graduate student J.J. Lee and postdoctoral researcher Felix Schmitt built a system for growing iron selenide films just one layer thick on a base of STO.

The team examined the combined material at SLAC's Stanford Synchrotron Radiation Lightsource, a DOE Office of Science User Facility. They used an exquisitely sensitive technique called ARPES to measure the energies and momenta of electrons ejected from samples hit with X-ray light. This tells scientists how the electrons inside the sample are behaving; in superconductors they pair up to conduct electricity without resistance. The researchers also got help from theorists who did simulations to help explain what they were seeing.

A Promising New Direction

"This is a very impressive experiment, one that would have been very difficult to impossible to do anywhere else," said Andrew Millis, a theoretical condensed matter physicist at Columbia University, who was not involved in the study. "And it's clearly telling us something important about why putting one thin layer of iron selenide on this substrate, which everyone thought was inert and boring, changes things so dramatically. It opens lots of interesting questions, and it will definitely stimulate a lot of research."

Scientists still don't know what holds electron pairs together so they can effortlessly carry current in high-temperature superconductors. With no way to deliberately invent new high-temperature superconductors or improve old ones, progress has been slow.

The new results "point to a new direction that people have not considered before," Moore said. "They have the potential to really break records in high-temperature superconductivity and give us a new understanding of things we've been struggling with for years."

He added that SLAC is developing a new X-ray beamline at SSRL with a more advanced ARPES system to create and study these and other exotic materials. "This paper predicts a new pathway to engineering superconductivity in these materials," Moore said, "and we're building the tools to do just that."

In addition to researchers from SLAC's Materials Science Division and from Stanford, scientists from the University of British Columbia, the University of Tennessee, Lawrence Berkeley National Laboratory and the University of California, Berkeley contributed to this study. The work was funded by the DOE Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit http://www.slac.stanford.edu .

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Andrew Gordon | EurekAlert!

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>