Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students from the UAB and the UPC have been chosen to carry out a scientific experiment in microgravity with the ESA

26.01.2009
Sergi Vaquer, Doctor of Medicine from the UAB, and Arnau Rabadán, an industrial engineering student from the UPC, together with three teams from Norway, Germany and the United Kingdom, will participate in the ESA “Fly your Thesis!” program, an opportunity for PhD and master’s degree students from across Europe to design, build, and carry out a scientific experiment in microgravity.

In the final phase of the competition there were 16 research teams from different European universities who presented their projects at the ESA European Astronaut Centre, in Cologne (Germany), in December.

Next autumn the young researchers from the UAB and the UPC will participate in a campaign of three parabolic flights aboard the Airbus A300 ZERO-G that some astronauts use as part of their training. During the flights the aircraft accelerates as it gains altitude, then the engines are reduced to a minimum for 20 seconds while the plane traces a parabola in freefall.

For these 20 seconds, conditions close to zero gravity are attained within the cabin. These maneuvers are repeated up to 30 times during a flight, so that after completing the three flights in the campaign, the researchers will have had the opportunity to experiment with microgravity over a considerable amount of time.

The experiment is being coordinated by Sergi Vaquer and is called the ABCtr MicroG project. It will study the behavior of ABC transporters, biological agents that are responsible for removing drugs and other toxins from human cells, under microgravity conditions. For this purpose, the UPC and UAB researchers have developed a special protocol to enable the activity of these molecules to be measured very accurately during the 20 seconds of microgravity in each of the 30 parabolas on a parabolic flight. Arnau Rabadán is in charge of the technical part of the experiment that involves designing a mechanism to mix the biomedical fluid and the ABC transporters inside a syringe, activating the chemical reaction. All of this must be done at 37ºC, that is, human body temperature. After 20 seconds the system will introduce a liquid into the syringe to freeze the mixture so that it will not be affected by gravity and the experiment will be repeated in the next parabola.

The mechanism will be regulated by a control system, since the conditions for the experiment and the quantity of liquids to be injected must be precisely set. The control system includes active elements, such as the motor to drive the syringes, and also supervisory elements, such as the censors to regulate the temperature of the syringe where the mixing is done.

The engineering, production and flight preparation activities will be supervised by Felip Fenollosa, a lecturer at the Department of Mechanical Engineering of the UPC and co-director of the CIM Foundation. The CIM Foundation is a technological reference center of the UPC in the field of production technologies, and the design and building of the mechanism will now begin there. This will be based on a prototype of the equipment that was developed in 2008 at the CIM Foundation by Rosa Pàmies, a lecturer in mechanical engineering at the UPC.

Improving medical treatments
The results will be useful in improving medical treatments for astronauts but they will also assist with a better understanding of the biological agents involved in the assimilation of drugs in general and the action of the transporters in illnesses such as cancer and AIDS.

Sergi Vaquer has worked as a crew physician at the Crew Medical Support Office of the ESA European Astronaut Centre, Cologne, and is currently a resident physician at the Hospital Parc Taulí in Sabadell (associated with the UAB) and a researcher at the Municipal Medical Research Institute (IMIM) of the Hospital del Mar. Arnau Rabadán is studying the Diploma in Mechanical Engineering at the College of Industrial Engineering of Barcelona (EUETIB) of the UPC, and the scientific equipment for this experiment will be the subject of his final thesis. He is currently on a research scholarship from the CIM Foundation.

Other projects selected
The other projects selected by the ESA are Complex, presented by a team of four students from the Norwegian University of Science and Technology, in Trondheim (Norway), which will study the flow birefringence of a solution of clay particles in salty water, enabling them to better understand the self-organization of these small particles; the Dust Side of the Force presented by four students from the Institute of Planetology at the University of Münster (Germany), which aims to study greenhouse and thermophoretic effects, which can lift particles off the ground in low gravity conditions and are thought to be important in the formation of planets and the generation of dust storms on Mars; and AstEx, presented by two students from the Open University (United Kingdom) and from the University of Nice-Sophia Antipolis (France), which will investigate the behavior of a granular material under shear stress, with the possibility of using the results in the design of future missions to collect samples from asteroids.

Rossy Laciana | alfa
Further information:
http://www.upc.edu
http://www.upc.edu/saladepremsa

More articles from Physics and Astronomy:

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

nachricht Spin liquids − back to the roots
22.06.2017 | Universität Augsburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>