Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students from the UAB and the UPC have been chosen to carry out a scientific experiment in microgravity with the ESA

26.01.2009
Sergi Vaquer, Doctor of Medicine from the UAB, and Arnau Rabadán, an industrial engineering student from the UPC, together with three teams from Norway, Germany and the United Kingdom, will participate in the ESA “Fly your Thesis!” program, an opportunity for PhD and master’s degree students from across Europe to design, build, and carry out a scientific experiment in microgravity.

In the final phase of the competition there were 16 research teams from different European universities who presented their projects at the ESA European Astronaut Centre, in Cologne (Germany), in December.

Next autumn the young researchers from the UAB and the UPC will participate in a campaign of three parabolic flights aboard the Airbus A300 ZERO-G that some astronauts use as part of their training. During the flights the aircraft accelerates as it gains altitude, then the engines are reduced to a minimum for 20 seconds while the plane traces a parabola in freefall.

For these 20 seconds, conditions close to zero gravity are attained within the cabin. These maneuvers are repeated up to 30 times during a flight, so that after completing the three flights in the campaign, the researchers will have had the opportunity to experiment with microgravity over a considerable amount of time.

The experiment is being coordinated by Sergi Vaquer and is called the ABCtr MicroG project. It will study the behavior of ABC transporters, biological agents that are responsible for removing drugs and other toxins from human cells, under microgravity conditions. For this purpose, the UPC and UAB researchers have developed a special protocol to enable the activity of these molecules to be measured very accurately during the 20 seconds of microgravity in each of the 30 parabolas on a parabolic flight. Arnau Rabadán is in charge of the technical part of the experiment that involves designing a mechanism to mix the biomedical fluid and the ABC transporters inside a syringe, activating the chemical reaction. All of this must be done at 37ºC, that is, human body temperature. After 20 seconds the system will introduce a liquid into the syringe to freeze the mixture so that it will not be affected by gravity and the experiment will be repeated in the next parabola.

The mechanism will be regulated by a control system, since the conditions for the experiment and the quantity of liquids to be injected must be precisely set. The control system includes active elements, such as the motor to drive the syringes, and also supervisory elements, such as the censors to regulate the temperature of the syringe where the mixing is done.

The engineering, production and flight preparation activities will be supervised by Felip Fenollosa, a lecturer at the Department of Mechanical Engineering of the UPC and co-director of the CIM Foundation. The CIM Foundation is a technological reference center of the UPC in the field of production technologies, and the design and building of the mechanism will now begin there. This will be based on a prototype of the equipment that was developed in 2008 at the CIM Foundation by Rosa Pàmies, a lecturer in mechanical engineering at the UPC.

Improving medical treatments
The results will be useful in improving medical treatments for astronauts but they will also assist with a better understanding of the biological agents involved in the assimilation of drugs in general and the action of the transporters in illnesses such as cancer and AIDS.

Sergi Vaquer has worked as a crew physician at the Crew Medical Support Office of the ESA European Astronaut Centre, Cologne, and is currently a resident physician at the Hospital Parc Taulí in Sabadell (associated with the UAB) and a researcher at the Municipal Medical Research Institute (IMIM) of the Hospital del Mar. Arnau Rabadán is studying the Diploma in Mechanical Engineering at the College of Industrial Engineering of Barcelona (EUETIB) of the UPC, and the scientific equipment for this experiment will be the subject of his final thesis. He is currently on a research scholarship from the CIM Foundation.

Other projects selected
The other projects selected by the ESA are Complex, presented by a team of four students from the Norwegian University of Science and Technology, in Trondheim (Norway), which will study the flow birefringence of a solution of clay particles in salty water, enabling them to better understand the self-organization of these small particles; the Dust Side of the Force presented by four students from the Institute of Planetology at the University of Münster (Germany), which aims to study greenhouse and thermophoretic effects, which can lift particles off the ground in low gravity conditions and are thought to be important in the formation of planets and the generation of dust storms on Mars; and AstEx, presented by two students from the Open University (United Kingdom) and from the University of Nice-Sophia Antipolis (France), which will investigate the behavior of a granular material under shear stress, with the possibility of using the results in the design of future missions to collect samples from asteroids.

Rossy Laciana | alfa
Further information:
http://www.upc.edu
http://www.upc.edu/saladepremsa

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>