Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students from the UAB and the UPC have been chosen to carry out a scientific experiment in microgravity with the ESA

26.01.2009
Sergi Vaquer, Doctor of Medicine from the UAB, and Arnau Rabadán, an industrial engineering student from the UPC, together with three teams from Norway, Germany and the United Kingdom, will participate in the ESA “Fly your Thesis!” program, an opportunity for PhD and master’s degree students from across Europe to design, build, and carry out a scientific experiment in microgravity.

In the final phase of the competition there were 16 research teams from different European universities who presented their projects at the ESA European Astronaut Centre, in Cologne (Germany), in December.

Next autumn the young researchers from the UAB and the UPC will participate in a campaign of three parabolic flights aboard the Airbus A300 ZERO-G that some astronauts use as part of their training. During the flights the aircraft accelerates as it gains altitude, then the engines are reduced to a minimum for 20 seconds while the plane traces a parabola in freefall.

For these 20 seconds, conditions close to zero gravity are attained within the cabin. These maneuvers are repeated up to 30 times during a flight, so that after completing the three flights in the campaign, the researchers will have had the opportunity to experiment with microgravity over a considerable amount of time.

The experiment is being coordinated by Sergi Vaquer and is called the ABCtr MicroG project. It will study the behavior of ABC transporters, biological agents that are responsible for removing drugs and other toxins from human cells, under microgravity conditions. For this purpose, the UPC and UAB researchers have developed a special protocol to enable the activity of these molecules to be measured very accurately during the 20 seconds of microgravity in each of the 30 parabolas on a parabolic flight. Arnau Rabadán is in charge of the technical part of the experiment that involves designing a mechanism to mix the biomedical fluid and the ABC transporters inside a syringe, activating the chemical reaction. All of this must be done at 37ºC, that is, human body temperature. After 20 seconds the system will introduce a liquid into the syringe to freeze the mixture so that it will not be affected by gravity and the experiment will be repeated in the next parabola.

The mechanism will be regulated by a control system, since the conditions for the experiment and the quantity of liquids to be injected must be precisely set. The control system includes active elements, such as the motor to drive the syringes, and also supervisory elements, such as the censors to regulate the temperature of the syringe where the mixing is done.

The engineering, production and flight preparation activities will be supervised by Felip Fenollosa, a lecturer at the Department of Mechanical Engineering of the UPC and co-director of the CIM Foundation. The CIM Foundation is a technological reference center of the UPC in the field of production technologies, and the design and building of the mechanism will now begin there. This will be based on a prototype of the equipment that was developed in 2008 at the CIM Foundation by Rosa Pàmies, a lecturer in mechanical engineering at the UPC.

Improving medical treatments
The results will be useful in improving medical treatments for astronauts but they will also assist with a better understanding of the biological agents involved in the assimilation of drugs in general and the action of the transporters in illnesses such as cancer and AIDS.

Sergi Vaquer has worked as a crew physician at the Crew Medical Support Office of the ESA European Astronaut Centre, Cologne, and is currently a resident physician at the Hospital Parc Taulí in Sabadell (associated with the UAB) and a researcher at the Municipal Medical Research Institute (IMIM) of the Hospital del Mar. Arnau Rabadán is studying the Diploma in Mechanical Engineering at the College of Industrial Engineering of Barcelona (EUETIB) of the UPC, and the scientific equipment for this experiment will be the subject of his final thesis. He is currently on a research scholarship from the CIM Foundation.

Other projects selected
The other projects selected by the ESA are Complex, presented by a team of four students from the Norwegian University of Science and Technology, in Trondheim (Norway), which will study the flow birefringence of a solution of clay particles in salty water, enabling them to better understand the self-organization of these small particles; the Dust Side of the Force presented by four students from the Institute of Planetology at the University of Münster (Germany), which aims to study greenhouse and thermophoretic effects, which can lift particles off the ground in low gravity conditions and are thought to be important in the formation of planets and the generation of dust storms on Mars; and AstEx, presented by two students from the Open University (United Kingdom) and from the University of Nice-Sophia Antipolis (France), which will investigate the behavior of a granular material under shear stress, with the possibility of using the results in the design of future missions to collect samples from asteroids.

Rossy Laciana | alfa
Further information:
http://www.upc.edu
http://www.upc.edu/saladepremsa

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>