Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The structure of gold nanoparticles solved

21.08.2008
The research group lead by Professor Hannu Häkkinen of the Nanoscience Centre of the University of Jyväskylä, published an article concerning the structure of gold nanoparticles in a prominent American science journal Proceedings of the National Academy of Sciences.

The structure of gold nanoparticles has been largely unknown for over a decade. The current study helps to understand the stability, composition as well as electronic, chemical and optical properties of the particles.

"My personal dream came true late last year when a group led by Roger Kornberg at Stanford University made a breakthrough experiment determining the atomic structure of gold nanoparticles of a certain size. The structure resembled the prediction our research group had already earlier published. In the recent study we were able to comprehend why nature generates exactly these kinds of particles. The size of one particle is 1-3 nanometers, and since they behave in many respects like giant atoms, we call them superatoms in our study", Häkkinen explains.

Gold particles utilized to fight cancer?

Results of the study can be utilized in medicine, biomolecule research and nanoelectronics. With the help of gold nanoparticles it is, for instance, possible to destroy cancer cells. The particles are able to attach themselves to cancer cells due to a biologically compatible molecular overlayer. With the help of laser it is possible to heat the particles so much that the attached cancer cells die. Particles can also be used as a tracer when looking at biomolecules with an electron microscope. Nanoelectronics, for its part, can use gold nanoparticles as components in electrical circuits.

"Our study would not have been possible without the extensive high performance computing resources of the national IT centres of Finland, Germany and Sweden. The study took up quite a lot of computation time, but it was well worth the effort. I believe that our theoretical model on the stability of the gold nanoparticles will prove itself very useful in many interdisciplinary fields of research", Häkkinen notes.

In addition to Häkkinen’s research group researchers from Stanford University, Chalmers University of Technology in Göteborg and Georgia Institute of Technology in Atlanta collaborated in the study. In Finland the research has been funded by the Academy of Finland, the Finnish IT center for science and DEISA, Distributed European Infrastructure for Supercomputing Applications.

Liisa Harjula | alfa
Further information:
http://www.adm.jyu.fi
http://www.pnas.org/content/105/27/9157

Further reports about: Supercomputing atomic structure gold nanoparticle superatoms

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>