Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong and free electrons

01.03.2010
Long-predicted physical effects confirmed for the first time by a model system of strongly interacting electrons

From the study of an unusual two-dimensional electron system that is generated on the surface of low-temperature liquid helium, a RIKEN-led international research team has revealed that electrons free of atoms interact more strongly with each other than their counterparts in a semiconductor1.

The work provides valuable insights into both electron interactions and thin films of so-called ‘two-dimensional free electron gases’, which have useful applications. Low-noise amplifiers in mobile phone base stations, for example, use the electrical characteristics of weakly interacting two-dimensional electron gases in thin-film semiconductor devices.

The strong electron interaction observed by the researchers was evident once the free electrons were excited into a higher energetic state by microwave radiation. “As soon as the first electrons are in the higher state, the strong interaction between electrons in both states means that the energy difference between these two states changes as a result,” comments Denis Konstantinov from the research team.

This energy shift has been long predicted theoretically, although the weak electron interactions in semiconductors meant that it was too small to be observed. It is the strong electron interactions in the liquid helium system that enabled its detection for the first time. “It is due to its simplicity and extreme cleanness of our system that many theoretically predicted phenomena can be observed,” says Konstantinov.

The researchers then ventured to more complex experiments and applied a strong magnetic field perpendicular to the electron gas. This forced the electrons into a number of quantum states. As they increased the magnetic field, the energies of these quantum states shifted towards higher values. Successively, each quantum state changed to match the fixed energy of the higher energy surface state, again induced by the microwave radiation. At the matching condition, the electrical resistance of the quantum states increased owing to the interaction with the surface state. This resulted in characteristic oscillations in the electrical resistance with increasing magnetic field.

Konstantinov and colleagues also observed that in this configuration the strong interactions between the electrons can lead to a destruction of the quantum states and therefore to the complete disappearance of the resistance oscillations2.

At a more general level, however, the implications of these experiments are profound, and open a new arena for the study of such systems. Citing just one example, Konstantinov says that, “this is a model system to emulate quantum physical effects such as those explored for quantum computing.”

The corresponding author for this highlight is based at the Low Temperature Physics Laboratory, RIKEN Advanced Science Institute

Journal information

1. Konstantinov, D., Dykman, M. I., Lea, M. J., Monarkha, Y. & Kono, K. Resonant correlation-induced optical bistability in an electron system on liquid helium. Physical Review Letters 103, 096801 (2009)

2. Konstantinov, D. & Kono, K. Novel radiation-induced magnetoresistance oscillations in a nondegenerate two-dimensional electron system on liquid helium. Physical Review Letters 103, 266808 (2009)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6202
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>