Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Strangulation of Spiral Galaxies

25.11.2008
Astronomers in two UK-led international collaborations have separately uncovered a type of galaxy that represents a missing link in our understanding of galaxy evolution.

Galaxy Zoo, which uses volunteers from the general public to classify galaxies and the Space Telescope A901/902 Galaxy Evolution Survey (STAGES) projects have used their vast datasets to disentangle the roles of "nature" and "nurture" in changing galaxies from one variety to another.

Both studies have identified a population of unusual red spiral galaxies that are setting out on the road to retirement after a lifetime of forming stars. Crucially, nature and nurture appear to play a role in this transformation: both the mass of a galaxy as well as its local environment are important in determining when and how quickly its star formation is shut down. The scientists’ work appears together in a forthcoming edition of Monthly Notices of the Royal Astronomical Society.

Astronomers place most normal galaxies into two camps according to their visual appearance: either disk-like systems like our own Milky Way, or round, rugby-ball shaped collections of stars known as ellipticals. In most cases, a galaxy's shape matches its colour: spiral galaxies appear blue because they are still vigorously forming hot young stars. Elliptical galaxies, on the other hand, are mostly old, dead, and red, and tend to cluster together in crowded regions of space.

The Galaxy Zoo team examined the connection between the shapes and colours of over one million galaxies using images from the largest ever survey of the local Universe, the Sloan Digital Sky Survey and the help of hundreds of thousands of volunteers from the general public. A key ingredient to their success was reliably classifying the appearance of galaxies by actually looking at them, rather than relying on error-prone computer measurements.

Surprisingly, they find that many of the red galaxies in crowded regions are actually spiral galaxies, bucking the trend for red galaxies to be elliptical in shape. These red spiral galaxies may be just the smoking gun astronomers have been looking for.

Dr. Steven Bamford, an STFC postdoctoral researcher at the University of Nottingham, led the Galaxy Zoo study. "In order to have spiral arms, they must have been normal, blue, spiral galaxies up until fairly recently. But for some reason their star formation has been stopped, and they have turned red. Whatever caused them to stop forming stars can't have been particularly violent, or it would have destroyed the delicate spiral pattern." The Galaxy Zoo team concludes that a more subtle process must be at work, one that kills off star formation but does not disrupt the overall shape of the galaxy.

While Galaxy Zoo looked at the gross properties of millions of galaxies across a large chunk of sky, the STAGES project took a complementary approach by examining in detail just the sort of neighbourhoods where these transformations are expected to occur. Dr. Christian Wolf, an STFC Advanced Research Fellow at the University of Oxford, trained the Hubble Space Telescope on a region of space crowded with galaxies known as the A901/902 supercluster. Like the Galaxy Zoo team, Dr. Wolf also uncovered a surprisingly large population of spiral galaxies in the supercluster that are red in colour.

So has the star formation in these red spiral galaxies been completely killed off? The answer is no: despite their colour, the red spirals are actually hiding star formation behind a shroud of dust. Invisible to our (or Hubble's) eye, this star formation is only detectable in the infrared part of the spectrum i.e. radiation emitted from the galaxies at wavelengths longer than visible light.

Dr. Wolf remarks, "For the STAGES galaxies, the Spitzer Space Telescope provided us with additional images at infrared wavelengths. With them, we were able to go further and peer through the dust to find the missing piece of the puzzle". Within the supercluster, Dr. Wolf discovered that the red spirals were hiding low levels of hidden star formation, despite their otherwise lifeless appearance in visible light.

Putting the observations from both projects together, the picture that emerges is a gentle one: the star formation in blue spiral galaxies is gradually shut off and hidden behind dust, before petering out to form smooth "lenticular" (lens-shaped) red galaxies with no trace of spiral arms. To go further and transform the galaxy into an elliptical would require more violent mechanisms, such as the wholesale collision of galaxies.

Location is key: the red spirals are found primarily on the outskirts of crowded regions of space where galaxies cluster together. As a blue galaxy is drawn in by gravity from the rural regions to the suburbs, an interaction with its environment causes a slow-down in star formation. The closer in a galaxy is, the more it is affected.

But if environment decides where the process occurs, the mass of the galaxy decides how quickly it takes place. Because both STAGES and Galaxy Zoo looked at such large numbers of galaxies, they were able to further subdivide them according to how much they weighed. Sure enough, both groups find that galaxy mass is also important. Professor Bob Nichol of Portsmouth University, a Galaxy Zoo team member, explains: "Just as a heavyweight fighter can withstand a blow that would bring a normal person to his knees; a big galaxy is more resistant to being messed around by its local environment. Therefore, the red spirals that we see tend to be the larger galaxies - presumably because the smaller ones are transformed more quickly."

Chris Lintott, Galaxy Zoo team leader at the University of Oxford, pays tribute to the role of the general public in the Galaxy Zoo research. "These results are possible thanks to a major scientific contribution from our many volunteer armchair astronomers. No group of professionals could have classified this many galaxies alone."

Meghan Gray, STFC Advanced Fellow at the University of Nottingham and leader of the STAGES survey, comments on the agreement of the two projects on the role of environment and mass: "Our two projects have approached the problem from very different directions, and it is gratifying to see that we each provide independent pieces of the puzzle pointing to the same conclusion.”

The next step for both teams is to find out exactly what shuts off the star formation, by looking inside the galaxies themselves. One suspect behind the slow demise of galaxies is a process known as strangulation, in which a galaxy's fuel supply is stripped away as it encounters the crowd. Starved of the raw material needed to form new stars, it will slowly change colour from blue to red as its existing stars age.

Robert Massey | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>