Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange New "Species" of Ultra-Red Galaxy Discovered

02.12.2011
In the distant reaches of the universe, almost 13 billion light-years from Earth, a strange species of galaxy lay hidden. Cloaked in dust and dimmed by the intervening distance, even the Hubble Space Telescope couldn't spy it.

It took the revealing power of NASA's Spitzer Space Telescope to uncover not one, but four remarkably red galaxies. And while astronomers can describe the members of this new "species," they can't explain what makes them so ruddy.


"We've had to go to extremes to get the models to match our observations," said Jiasheng Huang of the Harvard-Smithsonian Center for Astrophysics (CfA). Huang is lead author on the paper announcing the find, which was published online by the Astrophysical Journal.

Spitzer succeeded where Hubble failed because Spitzer is sensitive to infrared light - light so red that it lies beyond the visible part of the spectrum. The newfound galaxies are more than 60 times brighter in the infrared than they are at the reddest colors Hubble can detect.

Galaxies can be very red for several reasons. They might be very dusty. They might contain many old, red stars. Or they might be very distant, in which case the expansion of the universe stretches their light to longer wavelengths and hence redder colors (a process known as redshifting). All three reasons seem to apply to the newfound galaxies.

All four galaxies are grouped near each other and appear to be physically associated, rather than being a chance line-up. Due to their great distance, we see them as they were only a billion years after the Big Bang - an era when the first galaxies formed.

"Hubble has shown us some of the first protogalaxies that formed, but nothing that looks like this. In a sense, these galaxies might be a 'missing link' in galactic evolution" said co-author Giovanni Fazio of the CfA.

Next, researchers hope to measure an accurate redshift for the galaxies, which will require more powerful instruments like the Large Millimeter Telescope or Atacama Large Millimeter Array. They also plan to search for more examples of this new "species" of extremely red galaxies.

"There's evidence for others in other regions of the sky. We'll analyze more Spitzer and Hubble observations to track them down," said Fazio.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer mission for NASA's Science Mission Directorate. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. NASA's Goddard Space Flight Center built Spitzer's Infrared Array Camera, which took the observations. The instrument's principal investigator is Giovanni Fazio of CfA.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu/

More articles from Physics and Astronomy:

nachricht Optical Nanoscope Allows Imaging of Quantum Dots
23.01.2018 | Universität Basel

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>