Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Storm clouds over Titan

Ground-based telescope captures first visual images of storm clouds over the tropics of Saturn's largest moon

Taking advantage of advanced techniques to correct distortions caused by Earth's atmosphere, astronomers used the NSF-supported Gemini Observatory to capture the first images of clouds over the tropics of Titan, Saturn's largest moon.

The images clarify a long-standing mystery linking Titan's weather and surface features, helping astronomers better understand the moon of Saturn, viewed by some scientists as an analog to Earth when our planet was young.

The effort also served as the latest demonstration of adaptive optics, which use deformable mirrors to enable NSF's suite of ground-based telescopes to capture images that in some cases exceed the resolution of images captured by space-based counterparts.

Emily Schaller from the University of Hawai'i, Henry Roe from Lowell Observatory, and Tapio Schneider and Mike Brown, both of Caltech, reported their findings in the Aug. 13, 2009, issue of Nature.

"Adaptive optics are helping our ground-based telescopes accomplish feats that have until now been capable only with telescopes in space," said Brian

Patten, a program director in NSF's Astronomy Division. "Now, we can remove the affects of the atmosphere, capturing images that in some cases exceed the resolution of those captured by space-based telescopes. Investments in adaptive optics technology are really starting to pay off."

On Titan, clouds of light hydrocarbons, not water, occasionally emerge in the frigid, dense atmosphere, mainly clustering near the poles, where they feed scattered methane lakes below.

Closer to the moon's equator, clouds are rare, and the surface is more similar to an arid, wind-swept terrain on Earth. Observations by space probes suggest evidence for liquid-carved terrain in the tropics, but the cause has been a mystery.

Regular monitoring of Titan's infrared spectrum suggests clouds increased dramatically in 1995 and 2004, inspiring astronomers to watch closely for the next brightening, an indicator of storms that could be imaged from Earth.

Schaller and her colleagues used NASA's Infrared Telescope Facility (IRTF), situated on Hawaii's Mauna Kea, to monitor Titan on 138 nights over a period of two years, and on April 13, 2008, the team saw a tell-tale brightening.

The researchers then turned to the NSF-supported Gemini North telescope, an 8-meter telescope also located on Mauna Kea, to capture the extremely high-resolution infrared snapshots of Titan's cloud cover, including the first storms ever observed in the moon's tropics.

The team suggests that the storms may yield precipitation capable of feeding the apparently liquid-carved channels on the planet's surface, and also influenced weather patterns throughout the moon's atmosphere for several weeks.

Read more in the Gemini press release at, the Lowell Observatory press release at, and the University of Hawaii press release at

View a video of astronomers Henry Roe and Mike Brown discussing recently announced observations of storm clouds in the tropics of Titan here:

For additional images and researcher contacts, see

Joshua Chamot | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>